Astronomical data analysis using Python

Lecture 9

Tutorial for Assignment 2

| hope all of you have downloaded Assignment 2 from the Moodle platform. Given that
this is a much tougher assignment than the first one, we will have two tutorial session
devoted to it on Dec 16, and Dec 20. | strongly recommend you to attempt the questions
by the 16th, so that if you have any doubts, these can be resolved on the 16th. In the
second tutorial, Preetish will present the full solutions for the questions.

Table Sorting

In [1]: from astropy.table import Table
demo table = Table.read("demo.txt", format="ascii")
print (demo table)

name obs date mag b mag v
M31 2012-01-02 17.
M31 2012-01-02 17.

M101 2012-01-02 15.
M82 2012-02-14 16.
M31 2012-02-14 16.
M82 2012-02-14 15.

M101 2012-02-14 15.
M82 2012-03-26 15.

M101 2012-03-26 15.

M101 2012-03-26 14.

ORNONONRRFRO
=
(6, IEN|
wuUuiuoUuTwwu Ul U

In [2]: demo table.sort(["name", "mag b"]) # sort by name, then magb

In [3]: print (demo table)

M101 2012-03-26 14.8 14.3
M101 2012-02-14 15.0 13.6
M101 2012-01-02 15.1 13.5
M101 2012-03-26 15.1 13.5
M31 2012-02-14 16.9 17.3
M31 2012-01-02 17.0 17.5
M31 2012-01-02 17.1 17.4
M82 2012-02-14 15.2 15.5
M82 2012-03-26 15.7 16.5
M82 2012-02-14 16.2 14.5

In [4]: demo table.reverse() # Reverse existing table. Descending order!
print (demo table)

M82 2012-02-14 16.
M82 2012-03-26 15.
M82 2012-02-14 15.
M31 2012-01-02 17.
M31 2012-01-02 17.
M31 2012-02-14 16.
M101 2012-03-26 15.
M101 2012-01-02 15.
M101 2012-02-14 15.
M101 2012-03-26 14.

COHMHWOORNNN
[y
N~
wouumwulh~ Uulul U,

Writing a table

In [5]: demo table.write('reversesortedtable.fits', format='fits', overwrite=True)

Many output formats are available: ascii (many variants like csv, with and without
headers), hdf5, votable, fits, latex etc. All these formats can be read from as well.

Table Groups

e |tispossible toorganize the table into groups.

e For example, all entries for object M101 can be selected as a single group.
e One can access individual groups for various operations.

e Also supported "group-wise reductions”

In [6]: demo table = Table.read("demo.txt", format="ascii")
grouped table = demo table.group by("name")

In [7]: # To access groups.
print (grouped table.groups[0]) # first group

name obs date mag b mag v
M101 2012-01-02 15.1 13.5
M101 2012-02-14 15.0 13.6
M101 2012-03-26 15.1 13.5
M101 2012-03-26 14.8 14.3

Group-wise Reductions (e.g. group-wise mean)

In [8]: dimport numpy

grouped table.groups.aggregate(numpy.mean)

WARNING: Cannot aggregate column 'obs date' with type '<U1l0’

oups]

“" Table length=3

name
str4
M101
M31
M82

mag_b

float64
15.000000000000002
17.0
15.699999999999998

mag_v

float64
13.725000000000001
17.400000000000002
155

[astropy.table.gr

Filters

e Defineafunction some filter(TableObject, KeyColumns) .
e The functionreturns True or False.
e Then use the function to remove rows which satisfy some condition.

The following will select all table groups with only positive values in the non- key
columns:

def all positive(table, key colnames):
colnames = [name for name in table.colnames if name not in
key colnames]
for colname in colnames:
if np.any(table[colname] <= 0):
return False
return True
t positive = tg.groups.filter(all positive)"

Stuff For You To Explore On Your Own
Stacks - vstack, hstack
"joins”

https://docs.astropy.org/en/stable/table/operations.html
(https://docs.astropy.org/en/stable/table/operations.html)

https://docs.astropy.org/en/stable/table/operations.html

Useful generic tools for handling astronomical data

e Topcat: Interactive viewer and editor for tabular data. Can handle data in many
formats, and includes tools for making many different kinds of plots.

e Aladin: interactive sky atlas allowing the user to visualize digitized astronomical
images or full surveys, superimpose entries from astronomical catalogues

e DS9:is an alternative to Aladin. It provides many of the features that Aladin has
in a fast, lightweight interface.

All of these tools are tightly integrated with each other, all follow Virtual Obervatory
protocols and can exchange data with each other. Even if you are going to process all
your data through a Python program, it is important that you become proficient in the
use of these tools, so that you can easily do quality checks on your analysis.

SkyCoord - generic object for coordinates

In [9]: from astropy.coordinates import SkyCoord
import astropy.units as u
¢ = SkyCoord(ra=10.68458*u.degree, dec=41.26917*u.degree)

print (c)

print (c.ra)

print (c.ra.hour)
print (c.ra.hms)
print (c.dec.degree)
print (c.dec.radian)
print (c.galactic)
print (c.fk4)

<SkyCoord (ICRS): (ra, dec) in deg
(10.68458, 41.26917)>

10d41m04.488s

0.7123053333333335

hms tuple(h=0.0, m=42.0, s=44.299200000000525)

41.26917

0.7202828960652683

<SkyCoord (Galactic): (1, b) in deg
(121.17424181, -21.57288557)>

<SkyCoord (FK4: equinox=B1950.000, obstime=B1950.000): (ra, dec) in deg
(10.00026791, 40.99534531)>

3D and angular separation

SkyCoord(ra=10*u.degree, dec=9*u.degree, distance=10*u.pc, frame='icrs')

In [10]: c1
SkyCoord(ra=11*u.degree, dec=10*u.degree, distance=11.5*u.pc, frame='icrs'

c2

)
print (cl.separation 3d(c2))
print (cl.separation(c2))

1.5228602415117987 pc
1d24m16.34302012s

Radial velocity correction

In [11]: from astropy.coordinates import EarthLocation
from astropy.time import Time
obstime = Time('2017-2-14")
target = SkyCoord.from name('M31') # needs internet connection
pune = EarthLocation.of address('Pune, India') # needs internet connection
target.radial velocity correction(obstime=obstime, location=pune).to('km/s")
apply correction to get heliocentric radial velocity accurate to about 3 m/s

out[11]: —22.332862 X2

FITS Files in Python

Again, if this talk was being given few years ago, we would cover

PyFITS

But now,

astropy.io.fits

First step, import the (sub) module.

In [12]: from astropy.io import fits

If you are using old code that uses PyFits you can say,

import astropy.io.fits as pyfits

or whatever alias you use for PyFITS and most of PyFITS based code should work fine.

Next step, open a FITS file. The method used for this creates a hdulist object. HDU =
Header Data Unit

In [13]: hdulist = fits.open("example.fits") # example.fits is a sample image on my comp

uter.

Next, check up some basic information about the FITS file.

In [14]: hdulist.info()

Filename: example.fits
No. Name Ver Type Cards Dimensions Format
0 PRIMARY 1 PrimaryHDU 71 (512, 512) intl6

As you can see, this is a single extension FITS file.

Accessing the FITS header

In [15]: hdulist[0].header

out[15]: SIMPLE = T / Fits standard
BITPIX = 16 / Bits per pixel
NAXIS = 2 / Number of axes
NAXIS1 = 512 / Axis length
NAXIS2 = 512 / Axis length
EXTEND = F / File may contain extensions
ORIGIN = 'NOAO-IRAF FITS Image Kernel July 2003' / FITS file originator
DATE = '2017-02-17T04:36:31' / Date FITS file was generated

IRAF-TLM= '2017-02-17T04:36:31"' / Time of last modification

OBJECT = 'm51 B 600s' / Name of the object observed
IRAF-MAX= 1.993600E4 / DATA MAX

IRAF-MIN= -1.000000EO@ / DATA MIN

CCDPICNO= 53 / ORIGINAL CCD PICTURE NUMBER
ITIME = 600 / REQUESTED INTEGRATION TIME (SECS)
TTIME = 600 / TOTAL ELAPSED TIME (SECS)
OTIME = 600 / ACTUAL INTEGRATION TIME (SECS)
DATA-TYP= 'OBJECT (0)' / OBJECT,DARK,BIAS, ETC.
DATE-0BS= '05/04/87' / DATE DD/MM/YY

RA = '13:29:24.00' / RIGHT ASCENSION

DEC = '47:15:34.00' / DECLINATION

EPOCH = 0.00 / EPOCH OF RA AND DEC

ZD = '22:14:00.00' / ZENITH DISTANCE

uT = ' 9:27:27.00' / UNIVERSAL TIME

ST = '14:53:42.00' / SIDEREAL TIME

CAM-ID = 1 / CAMERA HEAD ID

CAM-TEMP= -106.22 / CAMERA TEMPERATURE, DEG C
DEW-TEMP= -180.95 / DEWAR TEMPRATURE, DEG C
F1IPOS = 2 / FILTER BOLT I POSITION
F2P0S = © / FILTER BOLT II POSITION
TVFILT = © / TV FILTER

CMP - LAMP= ®© / COMPARISON LAMP

TILT-POS= © / TILT POSITION

BIAS-PIX= 0 /

BI-FLAG = © / BIAS SUBTRACT FLAG

BP-FLAG = © / BAD PIXEL FLAG

CR-FLAG = © / BAD PIXEL FLAG

DK-FLAG = © / DARK SUBTRACT FLAG

FR-FLAG = © / FRINGE FLAG

FR-SCALE= 0.00 / FRINGE SCALING PARAMETER

TRIM = '"Apr 22 14:11 Trim image section is [3:510,3:510]"

BT-FLAG = 'Apr 22 14:11 Overscan correction strip is [515:544,3:510]"
FF-FLAG = 'Apr 22 14:11 Flat field image is Flatl.imh with scale=183.9447'
CCDPROC = 'Apr 22 14:11 CCD processing done'

AIRMASS = 1.08015632629395 / AIRMASS

HISTORY 'KPNO-IRAF'
HISTORY '24-04-87'
HISTORY 'KPNO-IRAF'
HISTORY '08-04-92'

~N N

Specific stuff within header.

In [16]: hdulist[0].header["NAXIS1"] # by header keyword

Out[16]: 512

In [17]: hdulist[0].header[1] # or by header number.

Out[17]: 16
In [18]: all keys = hdulist[0].header.keys() # get a list of all keys.

In [19]: all values = hdulist[0].header.values()

You can also change the header values as if it were a dictionary.

Now, the data

In [20]: import matplotlib.pyplot as plt
import numpy as np

In [21]: plt.set cmap('inferno r')

plt.imshow(np.logl@(hdulist[0].data+abs(np.min(hdulist[0].data))+0.01),0rigin=
'lower')

Flat is better than nested - Zen of Python. We violated that and made the cod
e difficult to read.

Don't do this!
plt.colorbar()

Out[21]: <matplotlib.colorbar.Colorbar at 0x7fbf9009d2b0>

500
400
300
200
100
-1
o -2
H 104 200 300 400 500

=

L

(%)

[

]

Axis Conventions

If you load a FITS image in Python, in FORTRAN/C or in ds9, the image viewer, what
does I(X,Y) can give you different results!!! Also remember the zero origin versus one
origin problem.

There is a difference in whether the following code moves along horizontal axis first or
vertical axis first.

for x in range (header["NAXIS1"]) :
for y in range (header ["NAXIS2"]) :

This gets really complicated when you have datacubes which produce 3-D arrays.
Jupyter notebook to imshow the image. Also load image in ds9. Do a bit of fiddling
around and write your loops! In most cases when you work with the whole image, you
don't have to worry. While writing out a fits file, the y,x are reinverted automatically

In [22]: im = hdulist[0].data
print (im[461,68]) # this corresponds to 69,462 in the ds9 image. Display the 1

mage and verify 1it.
hdulist.close()

338

Writing FITS files

If you have a HDUIist object, you simply say,

hdulist.writeto ("outputfilename.fits")

If you want to make a file from scratch, create a dictionary of headers and the data array.

primaryhdu = fits.PrimaryHDU (data, header)
primaryhdu.writeto ("something.fits")

World Coordinate Systems
Few years ago,

import pywcs

In the era of Astropy,

from astropy import wcs

Funtionally, they are more or less the same.

Create a WCS object.

In [23]: from astropy import wcs
w = wcs.WCS("1105 160859.fits") # cutout image from the 1.4 GHz VLA FIRST sky s
urvey

While the above is allowed, taking into account that FITS files can have multiple
extensions, you should,

In [24]: hdulist = fits.open("1105 160859.fits")
w = wcs.WCS(hdulist[0].header)
print (w)
hdulist.close()

WCS Keywords

Number of WCS axes: 2

CTYPE : 'RA---SIN' 'DEC--SIN'

CRVAL : 34.3492317 -3.9826033

CRPIX : 18.3727199548739 18.44725428547099
CD1 1 CD1 2 : -0.0005555555555556 0.0
CD2 1 Cb2 2 : 0.0 0.0005555555555556
NAXIS : 35 35

It's the WCS object which has methods to perform any coordinate transformations.

In [25]: from astropy.wcs import utils
print (utils.pixel to skycoord(5,25,w,origin=1)) # Functional form

<SkyCoord (ICRS): (ra, dec) in deg
(34.35667894, -3.97896285)>

In [26]: w.wcs pix2world(5, 25, 1) # O0P form

out[26]: [array(34.35667894), array(-3.97896285)]

e Which pixel? (5, 25) or (6, 26). It's (5,25), the third argument 1 assures you that.
e Difference between wcs_pix2world and all_pix2world - the latter takes into

account some higher order transformations / corrections into account.
e Output? (RA, DEC) in degrees.

To do a reverse transformation.

In [27]: w.wcs world2pix(34.35,-3.97, 1)

out[27]: [array(16.99309841), array(41.13319346)]

In [28]: w.calc footprint() # The four corners of an image.

Out[28]: array([[34.35890669, -3.99229616],
[34.35890647, -3.97340727],
[34.33997206, -3.97340728],
[34.33997185, -3.99229617]])

In [29]: from astropy.wcs import WCS
from astropy.visualization import ZScalelnterval
from astropy.coordinates import SkyCoord
hdulist = fits.open('h n4603 f555 mosaic.fits')
wcs = WCS(hdulist[0].header)
interval = ZScalelnterval()
vmin,vmax = interval.get limits(hdulist[0].data)
ax = plt.subplot(11l1l, projection=wcs)
ax.imshow(hdulist[@].data, cmap='gray r', vmin=vmin, vmax=vmax, interpolation=N
one, origin="'lower")
ax.set xlabel("Right Ascension"); ax.set ylabel("Declination")
ax.coords.grid(color="'black', alpha=0.5, linestyle='solid"')
ax.plot coord(SkyCoord("12h40m54s","-40d58m0s", frame="fk5"), "ro")
hdulist.close()

WARNING: FITSFixedWarning: 'datfix' made the change 'Set MJID-0BS to 50255.0000
00 from DATE-OBS'. [astropy.wcCs.wcs]

40°56" 47

57" 4

Declination

12741706 00°
Right Ascension

