
Astronomical data analysis using PythonAstronomical data analysis using Python

Lecture 5Lecture 5

The Python Module EcosystemThe Python Module Ecosystem

There are three types of modules you will encounter in Python.

Built-in Modules (come with all standard installations of Python)
Third Party Modules (need to be installed separately)
Your Own Modules (we will see how to make them soon)

Built-in Modules - the Python Standard LibraryBuilt-in Modules - the Python Standard Library

sys - contains tools for system arguments, OS information etc.
os - for handling files, directories, executing external programs
re - for parsing regular expressions
datetime - for date and time conversions etc.
csv - for reading and writing CSV tables

and more than a hundred others that allow you to do many different things like text
processing, networking and interprocess communication, internet data handling and
much more. There are no built-in modules for advanced mathematics or big data
handling.

https://docs.python.org/3/library/ (https://docs.python.org/3/library/)

https://docs.python.org/3/library/

Third Party ModulesThird Party Modules

These need to be installed separately. There are probably hundreds of thousands of
modules in every imaginable area of computing. We are only going to learn about a
handful of them.

numpy / scipy - numerical plus scientific computing extensions to Python
matplotlib - using Python for plots
mayavi - for animations in 3D
pandas - for tabular data analysis
astropy - Python for Astronomers
astroquery - access online astronomy data repositories from Python
scikit-learn - machine learning and classification tools for Python

Third party modules will need to be separately installed via a program called pip
See

installation instructions at:

For a list of publicly available Python modules see:

which has more than 340k modules available as of Nov. 2021, incl. 651 astronomy
packages.

https://docs.python.org/3/installing/index.html
(https://docs.python.org/3/installing/index.html)

https://pypi.org/ (https://pypi.org/)

https://docs.python.org/3/installing/index.html
https://pypi.org/

Making your Own ModulesMaking your Own Modules

Very simple. Open a file, say, "MyModule.py"

Write code in the file.

If the file is in the present folder or in folders in the PYTHONPATH environment
variable, the following will work.

NOTE 1: File name must have extension .py
NOTE 2: When importing extension must be dropped.
NOTE 3: **Do not create modules with the same name as modules in the Python
Standard Library**

import MyModule

MyModule.somemethod ...

Example Module - Example.pyExample Module - Example.py

The above code is stored in a file on my computer called Example.py. Let's see how to use
it.

"""

This is a custom module.

Containing some functions for the purpose of demonstration.

"""

def fun1():

 print "Inside fun1"

def fun2():

 print "Inside fun2"

pi = 3.14

e = 2.7

print ("I am a Custom Module")

In [1]: import Example

Notice the message printed by Example.py. This is to illustrate that any output
generated by Example.py will appear on the screen.

In [40]: print (Example.pi)

In [2]: Example.fun1()

I am a Custom Module

3.14

Inside fun1

In [3]: help(Example)

Notice the description. It is what you enclosed in the "docstring" at the beginning of the
module.

Help on module Example:

NAME

 Example

DESCRIPTION

 This is a custom module.

 Containing some functions for the purpose of demonstration.

FUNCTIONS

 fun1()

 fun2()

DATA

 e = 2.7

 pi = 3.14

FILE

 /home/yogesh/Dropbox/python_2021/Example.py

assert Statementassert Statement

In [5]: L= [0.1,3,5,7]

A= 5.0

assert condition, description

assert len(L) > 10, "not enough data points"

assert type(A) is type(""), "requires a string"

Use assertions liberally, they make debugging complicated code much
easier.
Particularly useful at interfaces e.g. just before a function is
called. Very important
component of defensive programming

AssertionError Traceback (most recent call last)

<ipython-input-5-ca84793eb6e2> in <module>

 2 A= 5.0

 3 # assert condition, description

----> 4 assert len(L) > 10, "not enough data points"

 5 assert type(A) is type(""), "requires a string"

AssertionError: not enough data points

Exception handling with try-exceptException handling with try-except

In [13]: y=5

x=0

try:

 ratio = y/x

except ZeroDivisionError:

 print ('Divisor = 0')

Divisor = 0

The structure of try-exceptThe structure of try-except

try:

except SomeError:

[do some processing]

[respond to this particular error condition]

raise SomeError # now let something else handle the error

The try/except syntax has the advantage that what you want to do
appears first, you
don’t have to read past a lot of error trapping code to
find out what a particular block of
code is doing.

finally - block is executed even if an exceptionfinally - block is executed even if an exception

happenshappens

f = open('thisfile.txt',’r’)

try:

finally:

[do something with the file]

f.close()

If you know what exception to expectIf you know what exception to expect

In [1]: try:

 f = open('is_it_there.txt')

except FileNotFoundError:

 # Fallback code

 print("Your specified file is not found.")

Your specified file is not found.

The for-else contructThe for-else contruct

In [8]: for i in [1, 2, 3, 4, 5]:

 if i == 3:

 break

else:

 print("this block is only executed when no item of the list is equal to 3")

the the with statement statement

In [4]: # using with statement

with open('output_file', 'w') as file:

 file.write('hello world !')

 print('No need to explicitly close the file. The with has taken care of it'

)

No need to explicitly close the file. The with has taken care of it

Variable ScopingVariable Scoping

In [17]: import math

def area(r):

 """Area of circle with radius r"""

 return math.pi * r**2 # Name math is known!

def volume(r, h):

 """Vol. of cylinder with radius r, height h"""

 return area(r) * h # Name area is known!

volume(1., 2.) # Everything should be known at call time

Out[17]: 6.283185307179586

Local variables inside functionsLocal variables inside functions

In [20]: def f1():

 print (x) # Use variable x

def f2():

 x = "local x" # Assign variable x

 print (x)

x = "global x" # Same name x as in functions

f1() # "global x"

print (x) # "global x"

f2() # "local x"

print (x) # still "global x"

global x

global x

local x

global x

Function scopeFunction scope

Functions provide a nested namespace (scope). Name references search four scopes:

L: the function’s local scope
E: the scope of enclosing functions
G: the (module’s) global scope
B: the built-in scope (e.g. print() function)

Name assignments create local names unless you use the global statement

Because of these scoping rules, if you create a function in your main program that has
the same name as a built-in function then your function (e.g. type()) will override the

built-in function leading to unexpected issues. So please don't create functions with the
same name as built-in functions.

global statement statement

In [23]: def f3():

 global x

 x = "local x"

 print (x)

x = "global x"

print (x) # "global x"

f3() # "local x"

print (x) # now "local x"

Using global variables is almost always a bad idea. It makes debugging harder. Avoid
them.

global x

local x

local x

Passing rulesPassing rules

Immutable arguments act as if passed by value
When changing mutable arguments in place inside the function, the object is
changed outside the function too!

Reminder:

Numbers, strings, tuples are immutable
Lists, dictionaries, numpy.arrays are mutable

list - a mutable function argument - a mutable function argument

In [27]: mylist= [1,2,3]

def extendlist(var):

 var.extend([4,5])

extendlist(mylist)

print (len(mylist))

print(mylist)

5

[1, 2, 3, 4, 5]

float an Immutable function argument an Immutable function argument

In [35]: a=5.0

def floattostr(var):

 var = str(var)

 return var

floattostr(a)

print (type(a))

print (a)

print()

b = floattostr(a)

print (type(b))

print (b)

<class 'float'>

5.0

<class 'str'>

5.0

del keyword in Python keyword in Python

The del keyword in Python is primarily used to delete objects in Python. Since almost

everything in python represents an object in one way or another, the del keyword can
also be used to delete a list, slice a list, delete a dictionary, remove key-value pairs from a
dictionary, delete variables, etc. e.g. del a,redshift['M31'],mylist[2],

otherlist[3:]

The del frees up memory. Very useful if you have large arrays that are not going to be

used in your analysis going forward. May need to run garbage collection explicitly.

The The is keyword keyword

In [7]: a=5

b=5.0

print (a is b)

print (a==b)

False

True

How to choose variable namesHow to choose variable names

Names of variables can contain upper and lower
case English letters, underscores, and
the digits from 0 to 9, but the name cannot
start with a digit. Nor can a variable name be
a reserved word in Python.

Choose descriptive variables names, i.e., names that explain the
variable’s role in the
program. Well-chosen variable names are essential for making
a program easy to read,
easy to debug, and easy to extend. Well-chosen variable
names also reduce the need for
comments.

Unicode variable names are allowed in Python 3Unicode variable names are allowed in Python 3

In [54]: number = 5

எண் = 7

मेरी_सन्ख्या = 9

यादी = [4,5,6,'नमस्कार']

print (number + எண் + मेरी_सन्ख्या)

for i in यादी:

 print (i)

21

4

5

6

नमस्कार

Reserved words in PythonReserved words in Python

These reserved words cannot be used as variable names: and, as,
assert, break, class,
continue, def, del, elif, else, except, False,
finally, for, from, global, if, import, in, is, lambda,
None, nonlocal,
not, or, pass, raise, return, True, try, with, while, and yield . Besides these
some special characters are used in Python programs - : # {} () []

With this we have covered essentially all of Core Python. If you have reviewed the
lectures and have practiced the notebooks, you can claim that you are now set to
program in Python. The Python standard library and the vast world of third-party
modules now awaits you. Congratulations!

Assignment 1Assignment 1

Assignment 1 is nearly ready and will be placed on the Moodle platform and on the
website by tomorrow. Please solve the assignment. Preetish will conduct a tutorial
session, most likely on 2 Dec, 2021 to discuss the assigment problems and their solution.

Remember programming is about the doing, not about the knowing.

Plans for the second half of the coursePlans for the second half of the course

We are now halfway through the lectures. In the remaining 5 lectures, we will cover

numpy + scipy
matplotlib
astropy
astroquery

The second assignment will be more difficult than the first and will have real life
(although very simplified) code interactions with real data.

