
Astronomical data analysis using PythonAstronomical data analysis using Python

Lecture 4Lecture 4

In [1]: a = "Hello!"

for i, c in enumerate(a):

 print ("Character no. %d is %s" % (i+1, c)) # i+1 is used because Python is

0-indexed.

Character no. 1 is H

Character no. 2 is e

Character no. 3 is l

Character no. 4 is l

Character no. 5 is o

Character no. 6 is !

In [2]: a = "Hello!"

for i in enumerate(a):

 print (i)

(0, 'H')

(1, 'e')

(2, 'l')

(3, 'l')

(4, 'o')

(5, '!')

What we have covered so farWhat we have covered so far

Why use Python? Its basic ideas and design philosopy (Zen of Python), learning
resources.
Our slice of Python - astronomical data analysis
Some data types: �oat, str, int and their type casting functions
print() function and string formatting, tuple unpacking
builtin functions - dir(), help(), type()
bool and expression evaluation
sequences and sequence slicing, mutability
almost everything in Python is an object - full support for Object Oriented
Programming
Conditionals if-elif-else
Loops: while and for
Indentation
break and continue
Ordered structures - sequences, lists
Unordered (labelled) structure - dictionary
Elements of good programming style - PEP 8

What we will cover next:What we will cover next:

File I/O
Functions
Modules

Handling FilesHandling Files

Let us study how to handle �les through a simple exercise. The basic approach involves
creating �le objects in Python and use various methods associated with �le objects to
handle �le I/O. Such an approach is used in many other programming languages.

open() function is used to create a �le object.
�leObject.read() - reads entire �le as one big string.
�leObject.write() - to write a string into a �le.
�leObject.readlines() - to read each line as an element of a list.
�leObject.writelines() - to write a set of lines, each one being a string.
�leObject.close() - to close a �le (buffer �ush)

Program to "Double Space" a FileProgram to "Double Space" a File

In [1]: """

Program to create a double spaced file.

Input: File Name

Output: Modified File with .sp extension

"""

import sys # we need this to parse command line arguments.

import os # we need this to check for file's existence

In [2]: # Check number of arguments.

if len(sys.argv) == 2:

infile_name = sys.argv[1]

else:

print ("Oops! Incorrect Number of Arguments.")

sys.exit(2)

Check if file exists.

if not os.path.isfile(infile_name):

print ("File doesn't exist.")

sys.exit(3)

Oops! Incorrect Number of Arguments.

An exception has occurred, use %tb to see the full traceback.

SystemExit: 2

/home/yogesh/.local/lib/python3.6/site-packages/IPython/core/interactiveshell.

py:3304: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.

 warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)

In [1]: # Open the input file.

infile_name='sample.txt'

infile = open(infile_name, "r")

Open an output file.

outfile = open(infile_name + ".sp", "w")

Loop over each line, add new line to each line.

for line in infile.readlines():

line = line+"\n"

outfile.write(line)

outfile.close()

infile.close()

Please practice reading and writing simple text�les on your own. Assignment 1 will
require you to have these skills. Reading and writing of large data �les - images, spectra,
data cubes - will be taught a few lectures later. The process - open �lehandle, read/write
data, close �lehandle remains the same.

FunctionsFunctions

Blocks of code that perform a speci�c task. Very useful in avoiding replication of code
where the same or a very similar task is carried out multiple times inside a program.

In Python, a function is de�ned using the "def" keyword.

We have already seen examples of built-in functions.

�oat(), dict(), list(), len() etc.
math - sqrt(), radians(), sin()
open(), type() etc.

A Simple Function with no argumentsA Simple Function with no arguments

In [5]: def myfun():

 print ("Hello World!")

 print ("Nice to see you.")

print ("Outside the function.")

a function is not executed until it is called. Pay attention to how the statements indented
one level up are part of the function while the statement indented at the same level is
not a part of the function.

In [9]: myfun() # This is how you call our function.

Outside the function.

Hello World!

Nice to see you.

Function With One ArgumentFunction With One Argument

In [5]: def myfun(a):

 print ("Inside MyFun!")

 print (a)

In [6]: myfun() # WILL GIVE ERROR.

As per function de�nition, one argument / input is needed. An attempt to call the
function with none gives an error. EVEN supplying two arguments is wrong.

In [7]: myfun("An Input")

TypeError Traceback (most recent call last)

<ipython-input-6-f67cbbab1c46> in <module>

----> 1 myfun() # WILL GIVE ERROR.

TypeError: myfun() missing 1 required positional argument: 'a'

Inside MyFun!

An Input

REMEMBERREMEMBER

Python is a dynamically typed language. The true strength of this lies in the fact that you
can also call the above function with a �oat or integer or list input!

In [8]: myfun(5)

In [9]: myfun([1,2,3])

Inside MyFun!

5

Inside MyFun!

[1, 2, 3]

Functions that "return" something.Functions that "return" something.

In [10]: def add(a,b):

 return a+b

In [11]: a = add(2,3)

print (a)

5

A function that does not have a return statement returns by default an object called
"None".

In [12]: b = myfun("Hello")

In [13]: print (b)

Inside MyFun!

Hello

None

Functions can return more than one value at a time!Functions can return more than one value at a time!

In [18]: def sumprod(a,b):

 return a+b, a*b

In [19]: s, p = sumprod(2,3)

Well, technically - Python is returning only one object but that one object is a tuple - in
the above case

Optional ArgumentsOptional Arguments

"I want a function to assume some values for some arguments when I don't provide
them!" Let's see how this is achieved.

In [14]: def myfun(message = "Good Day!"):

 print (message)

In [15]: myfun("Hello World")

In [16]: myfun()

Hello World

Good Day!

Functions with Arbitrary Number of ArgumentsFunctions with Arbitrary Number of Arguments

In [23]: def sumitall(*values):

 total = 0

 for i in values:

 total += i

 return total

In [24]: sumitall(2,3,4,5)

In [25]: sumitall(2,3,4)

Out[24]: 14

Out[25]: 9

Mixture of ArgumentsMixture of Arguments

In [26]: sumitall()

In [27]: def sumitall2(val1, *values):

 total = val1

 for i in values:

 total += i

 return total

In [28]: sumitall2(2)

Out[26]: 0

Out[28]: 2

In [29]: sumitall2(2,3,4)

In [30]: sumitall2() # WILL GIVE AN ERROR.

This way, you can design functions the way you want by imposing both a minimum
number of arguments and have �exibility of an arbitary number of them!

Out[29]: 9

TypeError Traceback (most recent call last)

<ipython-input-30-810847688c33> in <module>

----> 1 sumitall2() # WILL GIVE AN ERROR.

TypeError: sumitall2() missing 1 required positional argument: 'val1'

Functions are ObjectsFunctions are Objects

Like lists, dictionaries, ints, �oats, strings etc. you can pass functions to other functions
since they are just objects.

In [31]: def myfun(message):

 print (message)

In [32]: def do(f, arg):

 f(arg)

do(myfun, "Something")

In [17]: x = myfun # simple variable assignment

x("Hello!")

Something

Hello!

Function DocumentationFunction Documentation

Recall using help(math.hypot) to get help on understanding how to use hypot() function.
Can we design a function myfun() and ensure that help(myfun) also gives a nice "help"
output?

In [34]: def myfun(a,b):

 """

 Input: Two Objects

 Output: Sum of the two input objects.

 """

 return a+b

In [35]: help(myfun)

When designing functions of your own, it is always good to document what the function
does so that you and others can use it in the future with ease.

Help on function myfun in module __main__:

myfun(a, b)

 Input: Two Objects

 Output: Sum of the two input objects.

Builtin functions in the builtin moduleBuiltin functions in the builtin module

The Python interpreter has a number of functions and types built into it that are always
available. They are listed here in alphabetical order.

See: https://docs.python.org/3/library/functions.html#built-in-funcs
(https://docs.python.org/3/library/functions.html#built-in-funcs)

https://docs.python.org/3/library/functions.html#built-in-funcs

ModulesModules

Modules can be considered as "namespaces" which have a collection of objects which
which you can use when needed. For example, math modules has 42 objects including
two numbers "e" and "pi" and 40 functions.

Every program you execute directly is treated as a module with a special name __main__.

So, all the variables you de�ne, the functions you create are said to live in the namespace
of __main__.

When you say the following, you are making the namespace of math available to you.

To then access something inside math, you say

import math

math.object

So what happens when you "import"So what happens when you "import"

Python interpreter searches for math.py in the current directory or the
installation directory (in that order) and compiles math.py, if not already
compiled.
Next, it creates a handle of the same name i.e. "math" which can be used to access
the objects living inside math.

In [36]: import math

type(math)

Out[36]: module

Other way to "import"Other way to "import"

In the above example, you are accessing objects inside math through the module object
that Python created. It is also possible to make these objects become a part of the
current namespace.

from math import *

In [37]: from math import *

radians(45) # no math.radians required.

WARNING: The above method is extremely dangerous! If your program and the
module have common objects, the above statement with cause a lot of mix-up! This is
the single most stupid thing you can do as a Python programmer, so please don't do it.

Out[37]: 0.7853981633974483

A Middle GroundA Middle Ground

If there is an object you speci�cally use frequently and would like to make it a part of
your main namespace, then,

Strictly speaking even this is not at all advisable. Please avoid, if possible.

from ModuleName import Object

In [38]: from math import sin

print (sin(1.54))

NOTE: If you import the same module again in the same program, Python does not
reload. Use reload(ModuleName) for reloading.

0.9995258306054791

Aliases for a ModuleAliases for a Module

If you have decided to access a module's objects from its own namespace, you can
choose to alias the module with a name.

Try to use standard abbreviations - e.g. np for numpy

import numpy as np

np.array(...)

Another example,

import matplotlib.pyplot as plt

plt.plot(x,y)

