
Astronomical data analysis using PythonAstronomical data analysis using Python

Lecture 3Lecture 3

Our first program - introduced in the previous lectureOur first program - introduced in the previous lecture

In [126]: a = 3

b = 5

c = a+b

d = a-b

q, r = a/b, a%b # Yes, this is allowed!

Now, let's print!

print ("Hello World!") # just for fun

print ("Sum, Difference = ", c, d)

print ("Quotient and Remainder = ", q, r)

Hello World!

Sum, Difference = 8 -2

Quotient and Remainder = 0.6 3

Our First Program - Rewritten!Our First Program - Rewritten!

Let us introduce the following modifications to the program.

We use floats instead of ints.
We accept the numbers from the user instead of "hard coding" them.

In [65]: # Modified first program.

a = input("Please enter number 1: ")

b = input("Please enter number 2: ")

c, d = a+b, a-b

q, i = a/b, a//b

print (c,d,q,i)

Please enter number 1: 3

Please enter number 2: 5

TypeError Traceback (most recent call last)

<ipython-input-65-8d9a5e1f3c2a> in <module>

 3 b = input("Please enter number 2: ")

 4

----> 5 c, d = a+b, a-b

 6 q, i = a/b, a//b

 7

TypeError: unsupported operand type(s) for -: 'str' and 'str'

What happened?What happened?

Anything input through the keyboard using input() is ... a "string".
Strings support addition (concatenation) but nothing else.

So what should we do?So what should we do?

"3.0" is a string. 3.0 is a float!
To convert "3.0" into a float, we use a simple function - float("3.0")

So, let's rewrite our program!

In [127]: a = float(input("Enter Number 1: ")) # We are nesting functions here.

b = float(input("Enter Number 2: "))

c,d = a+b, a-b

q,i = a/b, a//b # a//b is the floor division operator

print ("Addition = %f, Difference = %f " % (c,d))

print ("Quotient = %f, Floor division quotient = %f" % (q,i))

The output looks ugly. Wish I could control the number of decimal places...

Enter Number 1: 3

Enter Number 2: 5

Addition = 8.000000, Difference = -2.000000

Quotient = 0.600000, Floor division quotient = 0.000000

In [128]: a = float(input("Enter Number 1: "))

b = float(input("Enter Number 2: "))

c,d = a+b, a-b

q,i = a/b, a//b

print("Addition = %.2f, Difference = %.2f " % (c,d))

print("Quotient = %.2f, Floor division quotient = %.2f" % (q,i))

Ah! now, that's much better.

Enter Number 1: 3

Enter Number 2: 5

Addition = 8.00, Difference = -2.00

Quotient = 0.60, Floor division quotient = 0.00

String FormattingString Formatting

We have seen a powerful of constructing strings in the previous example.

In [68]: print ("Addition = %.2f, Difference = %.2f " % (c,d))

C / FORTRAN users amongst you will immediately understand this method of string
construction.

Python supports this and its own way of string formatting.Python supports this and its own way of string formatting.

Addition = 8.00, Difference = -2.00

In [69]: gal_name = "NGC 7709"; int_bmagnitude = 13.6

In [70]: statement1 = "The galaxy %s has an integrated \

B-band magnitude of %.2f" % (gal_name, int_bmagnitude)

In [71]: statement2 = "The galaxy {0:s} has an integrated \

B-band magnitude of {1:.2f}".format(gal_name, int_bmagnitude)

In [72]: statement3 = "The galaxy {name:s} has an integrated \

B-band magnitude of {mag:.2f}".format(name=gal_name, mag=int_bmagnitude)

All the above statements are equivalent!All the above statements are equivalent!

In [73]: print (statement1,"\n", statement2, "\n", statement3, "\n")

You can choose whichever method you like!

As a former C/C++ user, I tend to use the first method.

But ... second and third methods are more "Pythonic". If you don't have previous
experience with the C type formatting use one of the more Pythonic ways.

The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

 The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

 The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

Raw StringsRaw Strings

We have seen the three methods of string declaration.
We have also seen string formatting.
String formatting taught us that symbols like { or % have special meanings in
Python.

In [74]: # There is a special way of declaring strings where

we can ask Python to ignore all these symbols.

raw_string = r"Here is a percentage sign % and a brace }"

print (raw_string)

Here is a percentage sign % and a brace }

Usefulness of Raw Strings - ExampleUsefulness of Raw Strings - Example

Typically, when we make plots and set labels, we would like to invoke a LaTeX
parser.
This would involve a lot \ $ and {}.

In such cases, it's best to use raw strings.

Other examples with special characters include writing Windows file paths, XML code,
HTML code, etc.

plt.xlabel(r" \log \rm{F}_v")

ConditionalsConditionals

In [75]: num = int(input("Enter number: "))

if num %2 == 0:

 print ("%d is even!" % num)

else:

 print ("%d is odd!" % num)

Enter number: 3

3 is odd!

You will use conditionals a lot in your data analysis.

In [1]: model_choice = int(input("Enter choice [1 or 2]: "))

spectrum = 3 # In a realistic case, this will be some complicated object.

if model_choice == 1:

 #model1(spectrum)

 print ("Model 1 fitted.")

elif model_choice == 2:

 #model2(spectrum)

 print ("Model 2 fitted.")

else:

 print ("Invalid model entered.")

Enter choice [1 or 2]: 2

Model 2 fitted.

What do you notice apart from the syntax in the aboveWhat do you notice apart from the syntax in the above

example?example?

Indentation - A Vital Part of the Pythonic WayIndentation - A Vital Part of the Pythonic Way

Be it the if-block illustrated above or the loops or the functions (to be introduced soon),
indentation is at the heart of the Python's way of delimiting blocks!

Function definitions, loops, if-blocks - nothing has your typical boundaries like { } as in
C/C++/Java.

The "level of the indentation" in the only way to define the scope of a "block".

In support of indentationIn support of indentation

Look at the following C-like code.

Which "if" does the "else" belong to?

In C and C-like languages, the braces {}s do the marking, the indentation is purely
optional. In Python, indentation levels determine scopes. In Python the "the else"
belongs to "if (x>0)".

Python forces you to write clean code! (Obfuscation lovers, go take a jump!)

Use either spaces or tabs (don't ever ever mix them) and use them consistently. I
strongly recommend using 4 spaces for each level of indentation.

if (x>0)

 if (y>0)

 print "Woohoo!"

else

 print "Booboo!"

Wrapping up if-elif-elseWrapping up if-elif-else

The general syntax:

if <condition>:

 do this

 and this

elif <condition>:

 this

 and this

...

else:

 do this

 and this

Conditions are anything that return True or False.Conditions are anything that return True or False.

== (equal to)
!=
>
>=
<
<=

You can combine conditionals using "logical operators"

and
or
not

The Boolean Data TypeThe Boolean Data Type

In [5]: a = True

b = False

if a:

 print ("This comes on screen.")

if b:

 print ("This won't come on screen.")

if a or b:

 print ("This also comes on screen.")

if a and b:

 print ("This won't come on screen either.")

In [78]: type(a) # To check type of object.

This comes on screen.

This also comes on screen.

Out[78]: bool

Almost all other types have a Boolean EquivalentAlmost all other types have a Boolean Equivalent

In [6]: a = 1

b = 0

if a:

 print ("Hello!")

if b:

 print ("Oh No!")

type(a)

Out[6]:

Hello!

int

In [80]: s1 = ""; s2 = "Hello" # s1 is an empty string

if s1:

 print ("Won't be printed.")

if s2:

 print ("Will be printed.")

This is bad Python style because remember that explicit is better than implicit. Use an
expression that evaluates to a boolean instead. Keep your programs readable.

Will be printed.

Conditional ExpressionConditional Expression

Consider...

In [81]: if 5 > 6:

 x = 2

else:

 x = 3

In [82]: y = 2 if 5 > 6 else 3 # if else block in one line is allowed

In [83]: print (x,y)

3 3

A Second Plunge into the Data TypesA Second Plunge into the Data Types

The two other data types we need to know:

Lists
Dictionaries

Data Types I will not cover (formally):

Tuples (immutable lists!)
Sets (key-less dictionaries!)
Complex Numbers
Fractions
Decimals

ListsLists

In [84]: a = [1,2,3,4] # simple ordered collection

In [85]: b = ["Hello", 45, 7.64, True] # can be heterogeneous

In [86]: a[0], a[-1], a[1:3] # All "sequence" operations supported.

In [87]: b[0][1] # 2nd member of the 1st member

Out[86]: (1, 4, [2, 3])

Out[87]: 'e'

In [88]: a = [[1,2,3] , [4,5,6] , [7,8,9]] # list of lists allowed.

In [89]: a[2][1] # Accessing elements in nested structures.

In [90]: [1,3,4] + [5,6,7] # Support concatenation

In [91]: [1,6,8] * 3 # Repetition (like strings)

Out[89]: 8

Out[90]: [1, 3, 4, 5, 6, 7]

Out[91]: [1, 6, 8, 1, 6, 8, 1, 6, 8]

Lists are Mutable! (Strings are not!)Lists are Mutable! (Strings are not!)

In [9]: a = [1,4,5,7]

In [10]: print (a)

In [11]: a[2] = 777 # set third element to 777

In [12]: print (a)

[1, 4, 5, 7]

[1, 4, 777, 7]

List MethodsList Methods

In [13]: a = [1,3,5]

print (a)

In [97]: a.append(7) # adds an element to the end

print (a) # the list has changed (unlike string methods!)

In [98]: a.extend([9,11,13]) # concatenates a list at the end

print (a)

In [99]: a.pop() # Removes one element at the end.

print (a)

In [100]: a.pop(2) # Removes 3rd element.

print (a)

[1, 3, 5]

[1, 3, 5, 7]

[1, 3, 5, 7, 9, 11, 13]

[1, 3, 5, 7, 9, 11]

[1, 3, 7, 9, 11]

Don't Forget!!!Don't Forget!!!

In [101]: print (dir(a)) # list of methods for a list "a"

In [102]: help(a.sort)

['__add__', '__class__', '__class_getitem__', '__contains__', '__delattr__',

'__delitem__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__geta

ttribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__i

nit__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul

__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__revers

ed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__s

ubclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'inser

t', 'pop', 'remove', 'reverse', 'sort']

Help on built-in function sort:

sort(*, key=None, reverse=False) method of builtins.list instance

 Sort the list in ascending order and return None.

 The sort is in-place (i.e. the list itself is modified) and stable (i.e. t

he

 order of two equal elements is maintained).

 If a key function is given, apply it once to each list item and sort them,

 ascending or descending, according to their function values.

 The reverse flag can be set to sort in descending order.

Implications of MutabilityImplications of Mutability

In [103]: l = [1,2,3,4]

m = l

l.append(5)

print (l)

print (m)

l and m point to the same object. When the object mutates, whether you refer to it using
l or m, you get the same mutated object.

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

How do I make a copy then?How do I make a copy then?

In [104]: l = [1,2,3,4]

m = l[:]

l.append(5)

print (l)

print (m)

Python has a module called "copy" available for making copies. Refer to the standard
library documentation for details.

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

DictionariesDictionaries

Imagine a list as a collection of objects obj0, obj1, obj2 ...
First object has a location 0, second 1 ...
Now, imagine renaming location 0 as "something", location 1 as "somethingelse"
...
Earlier, you accessed objects at numbered locations a[0].
Now, you access objects by specifying location labels a["something"]

Let's see this at work.

In [105]: d1 = { "a" : 3, "b" : 5}

print (d1["a"])

print (d1["b"])

"a", "b" are called keys and 3,5 are called values. So formally, a dictionary is a collection of
key-value pairs.

In [106]: d1["c"] = 7 # Since "c" does not exist, a new key-value pair is made.

d1["a"] = 1 # Since "a" exists already, its value is modified.

print (d1) # the ordering of key-value pairs in the dictionary is not guarantee

d.

3

5

{'a': 1, 'b': 5, 'c': 7}

Dictionary MethodsDictionary Methods

In [107]: keys = d1.keys() # Returns a list of all keys which is stored in "keys".

print (keys)

In [108]: values = d1.values() # Returns a list of values.

print (values)

In [109]: d1.items() # List of Tuples of key-value pairs.

dict_keys(['a', 'b', 'c'])

dict_values([1, 5, 7])

Out[109]: dict_items([('a', 1), ('b', 5), ('c', 7)])

Defining Dictionaries - ways to do thisDefining Dictionaries - ways to do this

In [110]: d1 = {"a":3, "b":5, "c":7} # we've seen this.

In [111]: keys = ["a", "b", "c"]

values = [3,5,7]

d2 = dict(zip(keys,values)) # creates dictionary similar to d2

In [112]: d3 = dict(a=3, b=5, c=7) # again, same as d1,d2

In [14]: d4 = dict([("a",3), ("b",5), ("c",7)]) # same as d1,d2,d3b

Dictionaries in data analysisDictionaries in data analysis

z['M31']

rmag['M1']

lumdist['3C 273']

The while loopThe while loop

In [114]: x = 0

while x<5:

 print (x)

 x += 1

0

1

2

3

4

In [115]: x = 1

while True: # Without the break statement this loop is infinite

 print ("x = %d" % x)

 choice = input("Do you want to continue? ")

 if choice != "y":

 break # This statement breaks the loop.

 else:

 x += 1

x = 1

Do you want to continue? y

x = 2

Do you want to continue? y

x = 3

Do you want to continue? n

The "for" loop - Pay Attention!The "for" loop - Pay Attention!

In [116]: x = [5,6,7,8,9,0] # a simple list

for i in x:

 print (i)

In " for i in x", x can be many different things, any iterable object is allowed.

5

6

7

8

9

0

In [117]: s = "Hello!"

for c in s:

 print (c)

No No No! I want my good old for-loop back which generates numbers x to y in steps of
z!!!

H

e

l

l

o

!

In [118]: # OKAY!!! Let's try something here.

for i in range(2,15,3):

 print (i)

2

5

8

11

14

Let us see some wicked for-loops.

In [17]: a = [1,2,3,4,5]

b = "Hello"

c = zip(a,b)

print(type(c))

for i,j in c:

 print (i, j)

<class 'zip'>

1 H

2 e

3 l

4 l

5 o

In [133]: a = "Hello!"

for i, c in enumerate(a):

 print ("Character no. %d is %s" % (i+1, c)) # i+1 is used because Python is

0-indexed.

print()

help(enumerate)

Character no. 1 is H

Character no. 2 is e

Character no. 3 is l

Character no. 4 is l

Character no. 5 is o

Character no. 6 is !

Help on class enumerate in module builtins:

class enumerate(object)

 | enumerate(iterable, start=0)

 |

 | Return an enumerate object.

 |

 | iterable

 | an object supporting iteration

 |

 | The enumerate object yields pairs containing a count (from start, which

 | defaults to zero) and a value yielded by the iterable argument.

 |

 | enumerate is useful for obtaining an indexed list:

 | (0, seq[0]), (1, seq[1]), (2, seq[2]), ...

 |

 | Methods defined here:

 |

 | __getattribute__(self, name, /)

 | Return getattr(self, name).

|

 |

 | __iter__(self, /)

 | Implement iter(self).

 |

 | __next__(self, /)

 | Implement next(self).

 |

 | __reduce__(...)

 | Return state information for pickling.

 |

 | --

 | Class methods defined here:

 |

 | __class_getitem__(...) from builtins.type

 | See PEP 585

 |

 | --

 | Static methods defined here:

 |

 | __new__(*args, **kwargs) from builtins.type

 | Create and return a new object. See help(type) for accurate signatur

e.

You can break and continue for-loops too!

In [18]: for i in range(10000):

 if i%2 == 0: # Even

 print (i,"is Even")

 continue

 print (i, "is Odd")

 if i == 7: # What if I had said "i==8 or i==10" ??????

 break

0 is Even

1 is Odd

2 is Even

3 is Odd

4 is Even

5 is Odd

6 is Even

7 is Odd

Traversing Dictionaries using for-loopsTraversing Dictionaries using for-loops

In [136]: d = dict(a = 1, b = 2, c = 3, d = 4)

for key,value in d.items():

 print (key, "-->", value)

In [123]: for key in d.keys():

 print (key, "-->", d[key])

a --> 1

b --> 2

c --> 3

d --> 4

a --> 1

b --> 2

c --> 3

d --> 4

Style Guide for Python CodeStyle Guide for Python Code

The PEP 8 provides excellent guidance on what to do and what to avoid while writing
Python code. I strongly urge you to study PEP 8 carefully and implement its
recommendations strictly.

The PEP 8 is very terse. For a more expanded explanation see:

https://www.python.org/dev/peps/pep-0008/ (https://www.python.org/dev/peps/pep-
0008/)

https://realpython.com/python-pep8/ (https://realpython.com/python-pep8/)

https://www.python.org/dev/peps/pep-0008/
https://realpython.com/python-pep8/

Python is fully Unicode UTF-8 standard compliantPython is fully Unicode UTF-8 standard compliant

In [3]: print("What is your name?")

print("আপনার নাম কি?")

print("உங்கள் பெயர் என்ன?")

print("तुझं नाव काय आहे?")

print("तुम्हारा नाम क्या हे?")

Google provides the Cloud Translation API client library for Python

https://cloud.google.com/translate/docs/reference/libraries/v2/python
(https://cloud.google.com/translate/docs/reference/libraries/v2/python)

What is your name?

আপনার নাম কি?

உங்கள் பெயர் என்ன?

तुझं नाव काय आहे?

तुम्हारा नाम क्या हे?

https://cloud.google.com/translate/docs/reference/libraries/v2/python

