Full Publications List

Tarun Souradeep
IUCAA, Pune, India

May 15, 2018

Summary:
Refereed Journals: 180 published
Books/Book Chapter: 2
Conference proc.: 23 published
Conference proc. editor: 1 published
Total number of citations (INSPIRE-HEP, formerly SLAC-SPIRES): 16,398

Avg. citations/published paper (INSPIRE-HEP): 96.5, h-index: 51

... in Books/Book Chapters

- Springer Handbook of Spacetime
 Chapter 32: Cosmology with the Cosmic Microwave Background.
 Tarun Souradeep
 Abhay Ashtekar, Vesselin Petkov, (Eds.)
 (Springer 2014) ISBN 978-3-642-41991-1

- Early Universe with CMB polarization
 Tarun Souradeep

- LIGO-India: a unique adventure in Indian science
 Tarun Souradeep, Sendhil S. Raja, Ziauddin Khan, C.S. Unnikrishnan & Bala Iyer
 Invited contribution: Special Section Astronomy, Ed. Ajit Kembhavi
1. **Reconstruction of a direction-dependent primordial power spectrum from Planck CMB data**

Durakovic, Amel, Hunt, Paul, Mukherjee, Suvodip, Sarkar, Subir, & Souradeep, Tarun

2. **Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations**

Sudevan, Vipin, Aluri, Pavan K., Yadav, Sarvesh Kumar, Saha, Rajib, & Souradeep, Tarun

3. **Low-l power suppression in punctuated inflation**

Qureshi, Mussadiq H., Iqbal, Asif, Malik, Manzoor A., & Souradeep, Tarun

4. **Constraining stochastic gravitational wave background from weak lensing of CMB B-modes**

Shaikh, Shabbir, Mukherjee, Suvodip, Rotti, Aditya, & Souradeep, Tarun

5. **Litmus Test for Cosmic Hemispherical Asymmetry in the Cosmic Microwave Background B-Mode Polarization**

Mukherjee, Suvodip & Souradeep, Tarun

6. **Direction dependence of cosmological parameters due to cosmic hemispherical asymmetry**

Mukherjee, Suvodip, Aluri, Pavan K., Das, Santanu, Shaikh, Shabbir, & Souradeep, Tarun

7. **Planck 2015 results. I. Overview of products and scientific results**
8. Planck 2015 results. XVI. Isotropy and statistics of the CMB
 Planck Collaboration, et al.

9. Constraining stochastic gravitational wave background from weak lensing of CMB B-modes
 Shaikh, Shabbir, Mukherjee, Suvodip, Rotti, Aditya, & Souradeep, Tarun
 Journal of Cosmology and Astro-Particle Physics, 9, 029, (2016).

10. Statistical isotropy violation in WMAP CMB maps resulting from non-circular beams
 Das, Santanu, Mitra, Sanjit, Rotti, Aditya, Pant, Nidhi, & Souradeep, Tarun

11. Estimating statistical isotropy violation in CMB due to non-circular beam and complex scan in minutes
 Pant, Nidhi, Das, Santanu, Rotti, Aditya, Mitra, Sanjit, & Souradeep, Tarun
 Journal of Cosmology and Astro-Particle Physics, 3, 035, (2016).

12. Novel approach to reconstructing signals of isotropy violation from a masked CMB sky
 Aluri, Pavan K., Pant, Nidhi, Rotti, Aditya, & Souradeep, Tarun

13. Bayesian inference on the sphere beyond statistical isotropy
 Das, Santanu, Wandelt, Benjamin D., & Souradeep, Tarun
 Journal of Cosmology and Astro-Particle Physics, 10, 050, (2015).

14. Joint Planck and WMAP assessment of low CMB multipoles
 Iqbal, Asif, Prasad, Jayanti, Souradeep, Tarun, & Malik, Manzoor A.
 Journal of Cosmology and Astro-Particle Physics, 6, 014, (2015).

15. Leakage of power from dipole to higher multipoles due to non-symmetric beam shape of the CMB missions
Das, Santanu & Souradeep, Tarun

Journal of Cosmology and Astro-Particle Physics, 5, 012, (2015).

16. **Joint Planck and WMAP assessment of low CMB multipoles**

Iqbal, Asif, Prasad, Jayanti, Souradeep, Tarun, & Malik, Manzoor A.

Journal of Cosmology and Astro-Particle Physics, 6, 014, (2015).

17. **Leakage of power from dipole to higher multipoles due to non-symmetric beam shape of the CMB missions**

Das, Santanu & Souradeep, Tarun

Journal of Cosmology and Astro-Particle Physics, 5, 012, (2015).

18. **Orthogonal bipolar spherical harmonics measures: Scrutinizing sources of isotropy violation**

Saurabh Kumar, Aditya Rotti, Moumita Aich, Nidhi Pant, Sanjit, Mitra, & Tarun Souradeep

19. **Revised cosmological parameters after BICEP 2 and BOSS**

Santanu Das, Suvodip Mukherjee, & Tarun Souradeep,

Journal of Cosmology and Astro-Particle Physics, 2, 016, (2015).

20. **Unveiling acoustic physics of the CMB using nonparametric estimation of the temperature angular power spectrum for Planck**

Amir Aghamousa, Arman Shafieloo, Mihir Arjunwadkar, & Tarun Souradeep

Journal of Cosmology and Astro-Particle Physics, 2, 007, (2015).

21. **Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements**

Suvodip Mukherjee, Santanu Das, Minu Joy & Tarun Souradeep

Journal of Cosmology and Astro-Particle Physics, 1, 043, (2015).

22. **Primordial power spectrum from Planck**

Dhiraj Kumar Hazra, Arman Shafieloo, & Tarun Souradeep,

Journal of Cosmology and Astro-Particle Physics, 11, 011, (2014).
23. **Planck 2013 results. XXIII. Isotropy and statistics of the CMB**

 Planck Collaboration, P. Ade et al.

24. **Planck 2013 results. I. Overview of products and scientific results**

 Planck Collaboration, P. Ade et al.

25. **Statistical isotropy violation of CMB Polarization sky due to Lorentz boost**

 Suvodip Mukherjee, Aritra De, Tarun Souradeep

26. **Statistically anisotropic Gaussian simulations of the CMB temperature field**

 Suvodip Mukherjee, Tarun Souradeep

27. **Suppressing CMB low multipoles with ISW effect**

 Santanu Das, Tarun Souradeep

 Journal of Cosmology and Astroparticle Physics (JCAP) 02 002, (2014)

28. **Model-independent forecasts of CMB angular power spectra for the Planck mission**

 Amir Aghamousa, Mihir Arjunwadkar, Tarun Souradeep

29. **SCoPE: an efficient method of Cosmological Parameter Estimation**

 Santanu Das & Tarun Souradeep

 Journal of Cosmology and Astro-Particle Physics, 7, 018, (2014).
30. **ISW effect as probe of features in the expansion history of the Universe**
 Santanu Das, Arman Shafieloo, Tarun Souradeep
 Journal of Cosmology and Astroparticle Physics (JCAP) **10** 016, (2013)

31. **A comparison of CMB lensing efficiency of gravitational waves and large scale structure**
 Hamsa Padmanabhan, Aditya Rotti, Tarun Souradeep

32. **Cosmological parameter estimation with free-form primordial power spectrum**
 Dhiraj Kumar Hazra, Arman Shafieloo, Tarun Souradeep

33. **Primordial power spectrum: a complete analysis with the WMAP nine-year data**
 Dhiraj Kumar Hazra, Arman Shafieloo, Tarun Souradeep
 Journal of Cosmology and Astroparticle Physics (JCAP) **07**, 031, (2013)

34. **Oscillations in the inflaton potential: Exact numerical analysis and comparison with the recent and forthcoming CMB datasets**
 Moumita Aich, Dhiraj Kumar Hazra, L. Sriramkumar, Tarun Souradeep

35. **A New Window into Stochastic Gravitational Wave Background**
 Aditya Rotti, Tarun Souradeep

36. **Cosmological parameter estimation using Particle Swarm Optimization**
 Jayanti Prasad, Tarun Souradeep

37. **Statistics of bipolar representation of CMB maps**
 Nidhi Joshi, Aditya Rotti, Tarun Souradeep
38. Evolution of the CMB Power Spectrum Across WMAP Data Releases: A Nonparametric Analysis
 Amir Aghamousa, Mihir Arjunwadkar, Tarun Souradeep

39. Odd-Parity Bipolar Spherical Harmonics
 Laura G. Book, Marc Kamionkowski, Tarun Souradeep

40. Assumptions of the primordial spectrum and cosmological parameter estimation.
 Arman Shafieloo, Tarun Souradeep

41. The Odd-Parity CMB Bispectrum
 Marc Kamionkowski, Tarun Souradeep

42. Power spectrum nulls due to non-standard inflationary evolution
 Gaurav Goswami, Tarun Souradeep

43. Perturbed Power-law parameters from WMAP7
 Minu Joy, Tarun Souradeep
 Journal of Cosmology and Astroparticle Physics (JCAP) 1102, 016, (2011)

44. Foreground Maps in WMAP frequency bands
 Tuhin Ghosh, Jacques Delabrouille, Mathieu Remazeilles, Jean-Francois Cardoso, Tarun Souradeep

45. The size of the longest filament in the Luminous Red Galaxy distribution.
 Biswajit Pandey, Gauri Kulkarni, Somnath Bharadwaj, Tarun Souradeep
46. **Primordial features due to a step in the inflaton potential.**
 Dhiraj Kumar Hazra, Moumita Aich, Rajeev Kumar Jain, L. Sriramkumar, Tarun Souradeep

47. **The tensor-to-scalar ratio in punctuated inflation**
 Rajeev Kumar Jain, Pravabati Chingangbam, L. Sriramkumar, Tarun Souradeep

48. **Bipolar Harmonic encoding of CMB correlation patterns**
 Nidhi Joshi, Sanjay Jhingan, Tarun Souradeep, Amir Hajian

49. **Statistical Isotropy violation of the CMB brightness fluctuations**
 Moumita Aich, Tarun Souradeep

50. **Features in the primordial power spectrum? A frequentist analysis**
 Jan Hamann, Arman Shafieloo, Tarun Souradeep

51. **CMB Polarization and Temperature Power Spectra Estimation using Linear Combination of WMAP 5-year Maps**
 Pramoda Kumar Samal, Rajib Saha, Jacques Delabrouille, Simon Prunet, Pankaj Jain, Tarun Souradeep

52. **AIGO: a southern hemisphere detector for the worldwide array of ground based interferometric gravitational wave detectors**
 P. Barriga et al.
 Class. Quantum Grav. **27**, 084005, (2010)

53. **Model Independent Foreground Power Spectrum Estimation using WMAP 5-year Data**
 Tuhin Ghosh, Rajib Saha, Pankaj Jain, Tarun Souradeep
54. **Punctuated inflation and the low CMB multipoles**

Rajeev Kumar Jain, Pravabati Chingangbam, Jinn-Ouk Gong, L. Sriramkumar, Tarun Souradeep

55. **Non-circular beam correction to CMB power spectrum**

Sanjit Mitra, Subharthi Ray, Rajib Saha, Anand Sengupta and Tarun Souradeep

56. **Estimation of Primordial Spectrum with post-WMAP 3 year data**

Arman Shafieloo and Tarun Souradeep

57. **CMB anisotropy power spectrum using linear combinations of WMAP maps**

Rajib Saha, Simon Prunet, Pankaj Jain and Tarun Souradeep

58. **Gravitational Wave radiometry: Mapping a stochastic gravitational wave background**

Sanjit Mitra, Sanjeev Dhurandhar, Tarun Souradeep, Albert Lazzarini, Vuk Mandic, Sukanta Bose, Stefan Ballmer

59. **Features in the Primordial Spectrum from WMAP: A Wavelet Analysis**

Arman Shafieloo, Tarun Souradeep, P. Manimaran, Prasanta K. Panigrahi, Raghavan Rangarajan

60. **Unveiling Hidden Patterns in CMB Anisotropy Maps**

Tuhin Ghosh, Amir Hajian and Tarun Souradeep

61. **A reanalysis of the three-year Wilkinson Microwave Anisotropy probe temperature power spectrum and likelihood**
H.K.K. Eriksen et al. (collaboration of five international groups)
Indian group: Rajib Saha, Pankaj Jain and Tarun Souradeep

Amir Hajian and Tarun Souradeep

63. Measuring statistical isotropy of CMB anisotropy
Tarun Souradeep, Amir Hajian and Soumen Basak

64. Angular power spectrum of CMB anisotropy from WMAP
Tarun Souradeep, Rajib Saha and Pankaj Jain

65. Non-Circular beam correction to the CMB power spectrum
Tarun Souradeep, Sanjit Mitra, Anand Sengupta, Subharati Ray and Rajib Saha

66. Statistical Isotropy of CMB Polarization Maps
Soumen Basak, Amir Hajian and Tarun Souradeep

67. A blind estimation of the power spectrum of CMB anisotropy from WMAP
Rajib Saha, Pankaj Jain and Tarun Souradeep

68. Post-WMAP Assessment of Infrared Cutoff in the Primordial Spectrum from Inflation
Rita Sinha and Tarun Souradeep
69. **Statistical Isotropy in the WMAP Data: Bipolar Power Spectrum of CMB**
 Amir Hajian, Tarun Souradeep and Neil Cornish

70. **CMB Power spectrum estimation using Non-circular beams**
 Sanjit Mitra, Anand S. Sengupta and Tarun Souradeep

71. **Primordial power spectrum from WMAP.**
 Arman Shafieloo and Tarun Souradeep

72. **Measuring Statistical isotropy of the CMB anisotropy**
 Amir Hajian and Tarun Souradeep

73. **Galactic Foreground Constraints from the Python V Cosmic Microwave Background Anisotropy Data**
 Pia Mukherjee, Kim Coble, Mark Dragovan, Ken Ganga, John Kovac, Bharat Ratra and Tarun Souradeep

74. **Cosmic Microwave Background Anisotropy Measurement From Python V**
 K. Coble, S. Dodelson, M. Dragovan, K. Ganga, L. Knox, J. Kovac, B. Ratra, Tarun Souradeep

75. **OVRO CMB Anisotropy Measurement Constraints on Flat-Lambda and Open CDM Cosmogonies**
 Pia Mukherjee, Tarun Souradeep, Bharat Ratra, Naoshi Sugiyama and Krzysztof M. Gorski

76. **CMB Anisotropy Constraints on Flat-Λ and Open CDM cosmogonies from DMR, UCSB South Pole, Python, ARGO, MAX, White Dish, OVRO and SuZIE data**
Pia Mukherjee, Ken Gang, Bharat Ratra, Graca Rocha, Tarun Souradeep, Naoshi Sugiyama, Krzysztof M. Gorski

77. Inhomogeneities in the Microwave Background Radiation interpreted within the framework of the Quasi-Steady State Cosmology
J.V. Narlikar, R. G. Vishwakarma, Amir Hajian, Tarun Souradeep, G. Burbidge and F. Hoyle

78. Relic Gravity Waves from Braneworld Inflation
Varun Sahni, M. Sami and Tarun Souradeep

79. Window Function for Non-Circular Beam CMB Anisotropy Experiment
Tarun Souradeep and Bharat Ratra

80. Binned Cosmic Microwave Background Anisotropy Power Spectra: Peak Location
Silviu Podariu, Tarun Souradeep, J. Richard Gott III, Bharat Ratra and Michael S. Vogeley

81. Tree structure of the Percolating Universe
Stephane Colombi, Dmitry Pogosyan and Tarun Souradeep

82. CMB anisotropy in Compact Hyperbolic universes-I: Computing Correlation functions
J. Richard Bond, Dmitry Pogosyan and Tarun Souradeep

83. CMB anisotropy in Compact Hyperbolic universes-II: COBE maps and limits
J. Richard Bond, Dmitry Pogosyan and Tarun Souradeep

84. Computing CMB anisotropy in Compact Hyperbolic Spaces
 J. Richard Bond, Dmitry Pogosyan and Tarun Souradeep

85. Skewness in the Cosmic Microwave Background Anisotropy from Inflationary Gravity Wave Background
 Somnath Bharadwaj, Dipak Munshi and Tarun Souradeep

86. Skewness of cosmic microwave background temperature fluctuations due to non-linear gravitational instability
 Dipak Munshi, Tarun Souradeep and Alexei Starobinsky

87. Generation of seed perturbations from Quantum Cosmology
 Tarun Souradeep

88. Density perturbations, Gravity waves and Cosmic microwave background
 Tarun Souradeep and Varun Sahni

89. Quantum effects near a point mass in 2+1 Dimensional gravity
 Tarun Souradeep and Varun Sahni
90. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA
Abbott, B. P., et al.

91. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences
Abbott, B. P., et al.

92. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run
Abbott, B. P., et al.

93. All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run
Abbott, B. P., et al.

94. First Search for Nontensorial Gravitational Waves from Known Pulsars
Abbott, B. P., et al.

95. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Abbott, B. P., et al.

96. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data
Abbott, B. P., et al.
97. **GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence**
 Abbott, B. P., et al.

98. **Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817**
 Abbott, B. P., et al.

99. **Erratum: "First Search for Gravitational Waves from Known Pulsars with Advanced LIGO"**
 Abbott, B. P., et al.

100. **On the Progenitor of Binary Neutron Star Merger GW170817**
 Abbott, B. P., et al.

101. **Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817**
 Abbott, B. P., et al.

102. **Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory**
 Albert, A., et al.

103. **A gravitational-wave standard siren measurement of the Hubble constant**
 Abbott, B. P., et al.
104. **GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral**
 Abbott, B. P., et al.

105. **GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence**
 Abbott, B. P., et al.

106. **Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A**
 Abbott, B. P., et al.

107. **Multi-messenger Observations of a Binary Neutron Star Merger**
 Abbott, B. P., et al.

108. **All-sky search for periodic gravitational waves in the O1 LIGO data**
 Abbott, B. P., et al.

109. **Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data**
 Abbott, B. P., et al.

110. **Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube**
 Albert, A., et al.

111. **Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO**
 Abbott, B. P., et al.
112. Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B
Abbott, B. P., et al.

113. Effects of waveform model systematics on the interpretation of GW150914
Abbott, B. P., et al.

114. Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544
Abbott, B. P., et al.

115. First Search for Gravitational Waves from Known Pulsars with Advanced LIGO
Abbott, B. P., et al.

116. Directional Limits on Persistent Gravitational Waves from Advanced LIGO’s First Observing Run
Abbott, B. P., et al.

117. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO’s First Observing Run
Abbott, B. P., et al.

118. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run
Abbott, B. P., et al.

119. Exploring the sensitivity of next generation gravitational wave detectors
Abbott, B. P., et al.

120. The basic physics of the binary black hole merger GW150914
Abbott, B. P., et al.

121. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
Abbott, B. P., et al.
Living Reviews in Relativity, 19, 1, (2016).

Abbott, B. P., et al.

123. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914
Abbott, B. P., et al.

124. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO's First Observing Run
Abbott, B. P., et al.

125. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project
Abbott, B. P., et al.

126. First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors
Abbott, B. P., et al.
127. Binary Black Hole Mergers in the First Advanced LIGO Observing Run
Abbott, B. P., et al.

128. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model
Abbott, B. P., et al.

129. Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence
Abbott, B. P., et al.

130. Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data
Abbott, B. P., et al.

131. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914
Abbott, B. P., et al.
Classical and Quantum Gravity, 33, 134001, (2016).

Abbott, B. P., et al.

133. Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914
Abbott, B. P., et al.

134. Tests of General Relativity with GW150914
Abbott, B. P., et al.

135. **High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube**

Adrián-Martínez, S., et al.

136. **Search for transient gravitational waves in coincidence with short-duration radio transients during 2007-2013**

Abbott, B. P., et al.

137. **Observing gravitational-wave transient GW150914 with minimal assumptions**

Abbott, B. P., et al.

138. **GW150914: First results from the search for binary black hole coalescence with Advanced LIGO**

Abbott, B. P., et al.

139. **GW150914: The Advanced LIGO Detectors in the Era of First Discoveries**

Abbott, B. P., et al.

140. **GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes**

Abbott, B. P., et al.

141. **Observation of Gravitational Waves from a Binary Black Hole Merger**

Abbott, B. P., et al.

142. **GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence**

Abbott, B. P., et al.

143. **Properties of the Binary Black Hole Merger GW150914**

Abbott, B. P., et al.

144. **Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914**

Abbott, B. P., et al.

Classical and Quantum Gravity, 33, 134001, (2016).

Abbott, B. P., et al.

146. **Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914**

Abbott, B. P., et al.

147. **Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data**

Abbott, B. P., et al.

148. **GW150914: The Advanced LIGO Detectors in the Era of First Discoveries**

Abbott, B. P., et al.

149. **GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes**

Abbott, B. P., et al.

150. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914
Abbott, B. P., et al.
Classical and Quantum Gravity, 33, 134001, (2016).

151. Observing gravitational-wave transient GW150914 with minimal assumptions
Abbott, B. P., et al.

152. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO
Abbott, B. P., et al.

153. Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers
Aasi, J., et al.

154. All-sky search for long-duration gravitational wave transients with initial LIGO
Abbott, B. P., et al.

155. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo
Abbott, B. P., et al.
Living Reviews in Relativity, 19, (2016).

156. Astrophysical Implications of the Binary Black-hole Merger GW150914
Abbott, B. P., et al.

157. Searches for Continuous Gravitational Waves from Nine Young Supernova Remnants
158. Characterization of the LIGO detectors during their sixth science run
 Aasi, J., et al.

159. Advanced LIGO
 LIGO Scientific Collaboration, et al.

160. Characterization of the LIGO detectors during their sixth science run
 Aasi, J., et al.

161. Advanced LIGO
 The LIGO Scientific Collaboration, et al.

162. Directed search for gravitational waves from Scorpius X-1 with initial
 LIGO data
 Aasi, J., et al.

163. Narrow-band search of continuous gravitational-wave signals from Crab
 and Vela pulsars in Virgo VSR4 data
 Aasi, J., et al.

164. Searching for stochastic gravitational waves using data from the two
 colocated LIGO Hanford detectors
 Aasi, J., et al.

165. Improved Upper Limits on the Stochastic Gravitational-Wave Back-
 ground from 2009-2010 LIGO and Virgo Data
Aasi, J., et al.

166. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

Aartsen, M. G., et al.

167. First all-sky search for continuous gravitational waves from unknown sources in binary systems

Aasi, J., et al.

168. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data

Aasi, J., et al.

169. Search for Gravitational Waves Associated with γ-ray Bursts Detected by the Interplanetary Network

Aasi, J., et al.

170. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

Aasi, J., et al.

171. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run

Aasi, J., et al.

172. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

Aasi, J., et al.

173. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010

Aasi, J., et al.

174. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

Aasi, J., et al.

175. Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run

Aasi, J., et al.

176. Gravitational Waves from Known Pulsars: Results from the Initial Detector Era

Aasi, J., et al.

177. First Searches for Optical Counterparts to Gravitational-wave Candidate Events

Aasi, J., et al.

178. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

Aasi, J., et al.

179. Directed search for continuous gravitational waves from the Galactic center

Aasi, J., et al.

180. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light
Aasi, J., et al.

... in Conference Proceedings

1. **A Bayesian Approach for Detection of Isotropy Violation of a Random Field Over a Sphere**
 Souradeep, Tarun, Das, Santanu, & Wandelt, Benjamin

2. **Bayesian Cosmological inference beyond statistical isotropy**
 Souradeep, Tarun, Das, Santanu, & Wandelt, Benjamin

3. **Cosmological parameter estimation using Particle Swarm Optimization**
 Prasad, J. & Souradeep, T.

4. **Statistics of statistical anisotropy measures**
 Pant, N., Rotti, A., & Souradeep, T.

5. **Dipole leakage and low CMB multipoles**
 Das, S. & Souradeep, T.

6. **‘Standard’ Cosmology & Beyond with CMB**
 Tarun Souradeep
 Plenary talk at GR-19, Mexico; Jul. 2010.
 Class. Quantum Grav. 28 114016 (2011).
7. **Early Universe with CMB polarization**

Tarun Souradeep

8. **Beyond the Standard cosmological model with CMB**

Tarun Souradeep

Bull. of the Astron. Soc. of India, ASICS Volume 3

9. **Early universe with CMB anisotropy**

Tarun Souradeep & Arman Shafieloo

Proc. of Invited talk at ICGA-8, Nara, Japan.

10. **Spectroscopy of Cosmic topology**

Tarun Souradeep

Invited contribution to a special issue of Indian Journal of Physics in memory of Prof. A. K. Raychaudhuri (gr-qc/0609026)

11. **Cosmology with CMB anisotropy**

Tarun Souradeep

12. **Cosmological quests in the CMB Sky**

Tarun Souradeep

13. **Statistical isotropy of CMB anisotropy from WMAP**

 Tarun Souradeep

 Proc. of the JGRG-14 (Japanese workshop on General Relativity and Gravitation), Invited plenary talk.

14. **The current status of observational cosmology**

 Jeremiah P. Ostriker and Tarun Souradeep

 Invited review in Proc. of the International Conference on Gravitation and Cosmology, Jan 5-10, 2004.

15. **Summary of ICGC-04 Cosmology Workshop**

 Tarun Souradeep

 Chairperson’s Summary : Proc. of the International Conference on Gravitation and Cosmology, Jan 5-10, 2004.

16. **Statistical isotropy of the Cosmic Microwave Background**

 Tarun Souradeep and Amir Hajian

 Special issue : Proceedings of the IX International Conference on Particles, Strings and Cosmology (PASCOS 2003) - Part II.

 Pramana, 62, 793-796, 2004

17. **Probing beyond the Cosmic Horizon**

 Tarun Souradeep

18. **Prospects for measuring Inflation parameters with the CMB**

 Tarun Souradeep, J. Richard Bond, L. Knox, G. Efstathiou and M.S. Turner

19. **Probing Cosmic topology using CMB anisotropy**
Tarun Souradeep, Dmitry Pogosyan and J. Richard Bond

20. **Constraints on Compact Hyperbolic Spaces from COBE**

J. Richard Bond, Dmitry Pogosyan and Tarun Souradeep

21. **MBR as a relic of Big Bang**

Tarun Souradeep

22. **Non-Gaussian features in the CMBR anisotropy maps from Gaussian initial conditions**

Tarun Souradeep

23. **Post-COBE predictions for Inflationary Gravity Wave and Density Perturbation spectra.**

Varun Sahni and Tarun Souradeep

. . . Editor of Conference Proceedings

24. **Proc. of the Sixth International Conference on Gravitation & Cosmology (ICGC-2007)**

Ghanashyam Date and Tarun Souradeep