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1. Introduction 

It is widely believed that under physically reasonable conditions, a sufficiently 

massive collapsing body will undergo continual gravitational collapse, resulting in 

the formation of a gravitational singularity. This singularity may or may not be 

visible to a faraway observer. However, there is some debate as to whether such a 

singularity will be naked or covered by an event horizon. The cosmic censorship 

hypothesis (CCH) [1] states that the spacetime singularities arising in the 

gravitational collapse must be hidden behind the event horizons. In other words, 

the singularities forming in the gravitational collapse of a massive star are never 

naked. There are two versions of this hypothesis. The strong version suggests that 

no  singularities are visible to any observers (i.e. local or faraway ) while the weak 

CCH  states that the singularities formed in the gravitational collapse are hidden 

inside the black holes and can not be seen  by an observer at infinity. 

 Over the last 25 years or so, classical relativists are interested in 

formulating a proper provable version of CCH. Despite several attempts made by 

many researchers, this hypothesis remains unproven till date. Various models 

studied in the past years show that either naked singularities or black holes may 

form during the gravitational collapse. These models include radiation [2-6],  dust 

[7-9], perfect fluid [10, 11], null strange quark fluid [12, 13]  etc. 

 Over the last few years solutions of the Einstein equations in higher 

dimensions have come to play an important role in relativistic physics. The brane 

world scenario [14] suggests that our four dimensional world may be embedded in 

a higher dimensional spacetime. Although the extra dimension is not directly 

observable, but TeV-scale theory [15, 16] suggests that our universe may have 

large extra dimensions. It is believed that initially our universe may be having 

infinite dimensions, but then by dimensional reduction it got settled to four 

dimensional case to the lower energy level. To make such reduction possible, the 

dimensions should have much weight in any realistic model. In this sense, the 

higher dimensional case considered in this work has much importance. 

 From the view point of the CCH, one would like to know the effect of extra 

dimensions on the existence of a naked singularity. Would the examples of a naked 
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singularity in four dimensions go over to HD or not?  Does the CCH hold in higher 

dimensional spacetimes? Does the dimensionality play any role in the formation of 

a naked singularity? These are some important questions, which are to be studied 

in the higher dimensional gravitational physics. Many research papers on the 

higher dimensional collapse have appeared so far [17-22], which show that either 

naked singularities or black holes may form in the gravitational collapse depending 

upon the nature of the initial data. Hence, though the higher dimensional 

spacetimes are not so realistic, to study CCH, it now becomes essential to study the 

gravitational collapse of a matter in the higher dimensional spacetimes.  

Husain solution of null fluid with ρkP =   has been used  to study the 

formation of a black hole with short hair [23] and can be considered as a 

generalization of Vaidya solution [24]. Recently, we have studied the gravitational 

collapse of the Husain solution in four dimensional spacetime [25] and found that 

this solution admits naked singularities under certain conditions on the mass 

function. Hence it would be interesting to see whether the higher dimensional 

collapse of Husain solution also leads to a naked singularity or not.  In other 

words, in the present paper we generalize the earlier work in Ref.[25] to higher 

dimensions.  

 The paper is organized as follows:  In section 2, we describe the five 

dimensional Husain spacetime and derive the radial null geodesics equations. In 

section 3, we investigate the formation and the nature of the singularities in higher 

dimensional asymptotically flat spacetimes. In section 4, we discuss the 

gravitational collapse of cosmological solution. Finally, the paper ends with 

concluding remarks. 
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2. Husain solution in five dimensional spacetime 

General spherically symmetric line element in five dimensional (5D) spacetime is 

given by [26,  27] 
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where  ),( rvm  is usually called mass function, and is related to gravitational 

energy within a given radius r .  Null coordinate v   represents the Eddington 

advanced time, in which r  decreases towards the future along a ray v=constant, 
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Non-vanishing components of Einstein tensor are given by 

 2
4
4

3
3

2
23

1
03

1
1

0
0 2

,
2
3,

2
3

r
mGGG

r
mG

r
mGG

′′
−====

′
−==

&
,      ( 2) 

where    
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Combining  Eq. (2)  with the Einstein field equations 
 
                                        ,µνµν κ TG =                                                 (3) 

 
κ being gravitational constant, we find that  the corresponding energy momentum 

tensor can be written in the form [24, 26, 28] 

 
               ,)()( mn TTT µνµνµν +=                         (4) 

    νµµν σ llT n =)( ,                (5) 

   µνµννµµν ηηρ gPllPT m +++= )()()(  . (6) 
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Combining  Eqs. (2), (3) and (4)  we can express the following quantities: 
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with   µl and   µη    being two null vectors ,   and 
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Here  ρ   and  P  are energy density and pressure ,  while σ   is the energy density 

of the Vaidya null radiation. 

 For these types of fluids, the energy conditions are given by [24, 28, 29]: 

(a) The weak and strong  energy conditions: 

           0>σ    ,  )0(,0,0 ≠≥≥ σρ P  .        (9)  

(b)   The dominant  energy conditions: 

                     0>σ    ,  .)0(,0 ≠≥≥ σρ P       (10) 

Following [26, 28] we define the mass function in five dimensional Husain 

solution: 
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where  )(vf and )(vg  are arbitrary functions (which are restricted by the energy 

conditions).  

For 31=k   weak  and dominant energy conditions cannot be satisfied for all r  

because   rvgvfm ln)()( &&& +=    can become negative for sufficiently small r [28].  

Hence we’ll not consider the case  3/1=k . 
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 The physical situation is for v < 0 , the spacetime is five dimensional 

Minkowskian, with 0)(,0)( == vgvf . The radiation is focused into a central 

singularity at  r = 0 ,  v = 0  of growing mass  f(v) and  g(v).   At  v = T ,  say,  the 

radiation is turned off.  For   v > T ,  the exterior spacetime settles into a five 

dimensional  Reissner  Nordstrom solution. In case of four dimensional spacetime, 

Husain [28] defined the above solution by imposing the equation of state  

      ρkP =   .          (12)    

Substituting the mass function (11)  into  Eq. (7)  we can find that  

         ρ
κ

k
r
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Husain solution is characterized by the equation of state (12), ρkP = , where 

10 << k , due to which, we always have 0≥≥ Pρ  and thus dominant energy 

conditions hold. It can be observed from  Eqs. (11) , (13) and (14) that , to 

satisfy weak and strong energy conditions we must have  0)( ≥vg  , and to 

ensure dominant energy conditions we would expect 0),( >rvm& . (This has been 

discussed in    details in Refs. [24, 28].  

 Inserting the expression for ),( rvm  from Eq. (11) into  Eq. (1), we write the 

Husain metric in five dimensional spacetime: 
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To investigate the nature of the singularity which may form in the gravitational 

collapse, we need to consider the radial null geodesics defined by 02 =ds ,  taking 

0321 === θθθ &&&    into account.         
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 Radial null geodesic equations (taking the null condition 0=a
a KK   into 

account,   where    dkdxK aa =    is the tangent vector to the  geodesic)  for the 

metric (1)   are  given by  
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Let    
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Using the null condition 0=a
a KK ,   we get 
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where  R  satisfies the differential equation  
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The outermost boundary of the trapped region of the spacetime is known as an 

apparent horizon. For the five dimensional spacetime (15) the apparent horizon is 

given by  

       0
13
)()( 1313 =

−
+− −+

k
vgrvfr kk  .  (21) 

The apparent horizon in the present case is defined as the outmost boundary  of the 

trapped 3-sphere. The location of the trapped 3-sphere is the place where the 

outward normal of the surface  r = const.  is null. The apparent horizon is 

spacelike for 0>r and 0>v . 
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 If one considers the asymptotically flat solution (i.e. 3/1>k ) and choose 

2/1=k , 2
52 )(,)( vvgvvf µλ ==  then the apparent horizon is given by the implicit 

relation  

02 2
5

2
122

5
=+− vrvr µλ  . 

To find the relation between r and v , we use the “curve fitting technique” to get  

8
vr =  . 

Thus the curve 8/vr =  is an apparent horizon. Beyond the horizon, all solutions 

escape towards the future infinity and the singularity is naked, while inside the 

apparent horizon, all solutions reach the singularity 0=r  with finite v . The graph 

for this type of curve (i.e. rv 8= ) is shown in Fig. 1. Similar type of graph can be 

found out for cosmological solution as well, (Fig. 2). (The graphs are given at the 

end of the paper).         

Referring the definition of the asymptotically flat spacetime from  [28], it 

can be observed that the spacetime (15) is asymptotically flat for 3/1>k   and is 

cosmological for  3/1<k  . In the present work we analyze the gravitational 

collapse of the higher dimensional spacetimes in both the types of solutions (i.e. 

asymptotically flat as well as cosmological). 
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3. Gravitational collapse of the higher dimensional asymptotically flat 

spacetime. 

For asymptotically flat spacetime we consider  13/1 << k .  

Let us take  2/1=k  .   Then the mass function (11)  becomes  
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1
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r
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Substituting  2/1=k   into  Eq. (15) we obtain the five dimensional asymptotically 

flat Husain solution 
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To investigate the nature of the singularity, we follow the method described in [6].  

Roughly speaking, naked singularities are singularities that may be seen by the 

physically allowed observer, i.e. outgoing light rays starting from the singularity 

terminate at the singularity in the past. The central shell-focusing singularity (i.e. 

that occurring at r = 0) is naked, if the radial null geodesic equation admits one or 

more positive real root [30]. The outgoing radial null geodesic equation for the 

metric (23) is given by 
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The above equation does not yield analytic solution for general values of  )(vf and 

)(vg . However, if 2)( vvf ∝  and  2
5

)( vvg ∝ ,  the equation becomes 

homogeneous and can be solved in terms of the elementary functions  [31]. 

 Hence, let us choose    2)( vvf λ=   and   2
5

)( vvg µ= .   Then the mass 

function  (22) becomes 
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With these choices of the functions )(vf and  )(vg  ,  the spacetime (23) becomes 
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It can be easily checked that the metric (26) is self-similar [32], admitting a 

homothetic killing vector aξ  given by 
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where L  denotes the Lie derivative. 

 It can be seen that  a
a Kξ  is constant along radial null geodesics, i.e. 
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where  S is a constant. 

Using the Eqs. (18), (19) and (25)  into Eq. (29),  we find the solution of the 

differential equation (20) as  
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where we have defined   rvX /= ,  and is known as a self-similarity variable. 

 To investigate the nature of the singularity, we need to consider the radial 

null geodesics  defined by 02 =ds .  Equation for the radial null geodesics for the 

metric (26) is given by 
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It can be  observed  that   the  above   differential  equation   has  a   singularity  at 

r = 0 ,   v = 0 . 

For the geodesic tangent  to be uniquely defined and exist at this point we must 

have [30] 
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i.e.    

 022 0
3
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2
7
0 =−+− XXX λµ . (33) 

 
The above algebraic equation decides the nature of the singularity. If the above 

Equation has a real and positive root,  then there exist future directed radial null 

geodesics originating from   r = 0 ,  v = 0 .  In this case the singularity will be 

naked.  If the Eq. (33) has  no real and positive root , then the singularity will be 

covered and the collapse proceeds to form a black hole. 

Setting  2
0 yX =   in  Eq. (33)  we obtain 

 022 267 =−+− yyy λµ   . (34) 

To analyze the nature of the root of the Eq. (34) the following rule in the ‘theory of 

equations’  may be useful: 

Every equation of odd degree has at least one real root whose sign is 

opposite to that of its last term, the coefficient of the first term being positive. 

As in Eq. (34) the coefficient of the first term (i.e. µ2 ) is positive and the last term 

is negative, the equation must have at least one positive root. 

 In particular, if we take   01.0=λ   and  001.0=µ    then one of the roots of  

Eq. (34) is  y = 1.4362 ,which on inserting in  2
0 yX = ,  gives 0625.20 =X  . Thus 

we have obtained a real and positive root to the Eq. (33), which ensures that the 

singularity is naked.  Further, if we set 0=µ  [24]  then the spacetime (26)  

reduces to five dimensional Vaidya spacetime and it has been shown in [33] that  

this solution admits naked singularity if 27/1<λ . 
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Strength of the naked singularity 

The main importance of determining the strength of the singularity is due to the 

fact that the cosmic censorship hypothesis (CCH) does not need to rule out the 

possibility of the occurrence of the weak naked singularity [34]. 

 A singularity is said to be strong if the collapsing objects do get crushed to 

a zero volume at the singularity, and a weak singularity if they do not. If the 

singularity is not strong, then it may not be considered as a physically realistic 

singularity. 

 Following Clarke and Krolak [35], a sufficient condition for a singularity to 

be  strong in the sense of Tipler [36], is that, at least along one radial null geodesic 

(with affine parameter k)  we must have 
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where aK is the tangent to the null geodesics and abR  is the Ricci tensor. 

Using Eqs. (18) and (19) we obtain 
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Using the fact that as the singularity is approached,   0,0,0 XXrk →→→  ,  
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Inserting the above  equation into Eq. (37), we obtain 
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Thus the singularity will be strong if  
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For our particular case  (i.e. 0625.2,001.0,01.0 0 === Xµλ )  we find that  
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2

153 2
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Thus the Clarke and Krolak  condition for the strong curvature singularity is 

satisfied, hence the naked singularity arising in this spacetime is gravitationally 

strong. 

 

 

4. Gravitational collapse of higher dimensional cosmological solution 

The spacetime (15) will become cosmological for  3/1<k  .   Hence let us take 

5/1=k  .  To get analytical solution  chose  2)( vvf λ=    and  5
8

)( vvg µ= . 

With these choices,  the mass  function (11) becomes  
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Using the  above cosmological solution, the higher dimensional cosmological 

Husain solution can be written as 
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It can be checked that the spacetime (41) is self-similar admitting a homothetic  

killing vector field aξ  defined by  Eq. (29).  For the spacetime (41), the outgoing 

radial null geodesics must satisfy the null condition 
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In order to  determine  the nature of  the singularity  at  r = 0 ,  v = 0,   we  let  
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Setting   5
0 yX =  ,  we obtain  
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In particular for  01.0=λ  and 001.0=µ  , we find, using numerical methods that  

the Eq.(44) has a  solution  1075.20 =X  , which shows  that the central singularity 

arising in the higher dimensional cosmological Husain spacetime is naked. 

 Further, following the method discussed in the previous section  it can be 

checked that  
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which shows that the singularity arising in this case is also a gravitationally strong 

curvature singularity 
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5. Concluding remarks 

We have generalized the earlier work given in Ref.[25] to higher dimensional 

Husain spacetime. We have considered both  asymptotically flat as well as 

cosmological solutions for this study. It has been found that the results in 4D case 

can be extended to the five dimensions, essentially in the same manner, retaining 

the physical properties of the solution. We have examined the strength of the 

naked singularity using the criterion introduced by Tipler [36] and found that the 

naked singularity will be a strong curvature singularity depending on the 

appropriate choices of the values of the parameters 0atand =rµλ . If we compare 

the apparent  horizons between 4D and 5D cases, we find that the apparent horizon 

in 5D case gets somewhat reduced in comparison to that of 4D case. This might be 

the effect of the increase in the strength of gravity, as the gravitational force is 

directly proportional to the size of the extra dimensions [37]. 

The Kretschmann scalar for the five dimensional Husain spacetime is 

proportional to )1(6 +− kr   [26]. This shows that Kretschmann scalar diverges 

at 0=r  , indicating that the singularity arising in this space time  is a scalar 

polynomial curvature singularity. Along null geodesics, the Kretschmann scalar, 

energy density etc. diverge for 0→r , so it is concluded that the singularity so 

formed at 0== rv  is an ingoing-null naked singularity.  

 Formation of the naked singularities in the  asymptotically flat as well as 

cosmological solutions indicate that, the condition of the asymptotically flatness of 

the spacetime does not play any fundamental  role in the formation of the naked 

singularity in higher dimensional spacetimes as well. 

 In conclusion, we have shown  that the extra dimensions cannot remove the 

formation of a naked singularity in the four dimensional collapse. Thus naked 

singularities do form in the higher dimensional spacetimes, that violates CCH. 
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Fig. 1 : Apparent horizon in  
5 – dimensional asymptotically 

flat Husain solution.  
For k = 1/2 ,  

v = 8 r. 

Fig. 2 : Apparent horizon in  
5 – dimensional cosmological  

Husain solution 
For k = 1/5, 
v = 9.5283 r. 
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