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Hot Big Bang Cosmology : Standard Model of Cosmology

Large scale uniformity - Homogeneity and Isotropy - Hubble
expansion

Early Universe dense, hot and small - the Big Bang

Gravitation only the relevant interaction at large scale -
General Relativity

Gµν =
8πG

c4
Tµ (1)

Homogeneous and Isotropic space time - FRW metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ dθ2 + sin2 θdφ2

]
, (2)

only two parameters - scale factor a(t) and spatial curvature
k.

Most of the energy of the Universe is in dark energy (70%)
and dark matter (25%), very less in baryons or atoms (5%).

Inflation
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Friedman Equations

For FRW metric, Einstein equation (1) can be written in
terms of a pair of equations called Friedman equations

ȧ2

a2
+

k

a2
=

8πGρ

3
(3)

and
ä

a
= −4πG

3
(ρ+ 3P) (4)

The rate of the expansion of the Universe is given by the
Hubble parameter:

H(t) =
1

a(t)

da(t)

dt
(5)

Energy density of any species is given by the density parameter
Ωρ/ρc where ρc is called the critical density and is defined as:

ρc(t) =
3H2(t)

8πG
(6)
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Distances

Physical distance between objects in an expanding universe
increases in proportion of a(t):

λ(t) =
a(t)

a(t0)
λ(t0) (7)

In comoving coordinate system (which expands with the
universe) distances between objects do not change with time
due to expansion.

The distance at which two objects in the Universe move away
with each other with the speed of light is called the Hubble
distance dH :

dH =
c

H
(8)

Comoving size of the Universe is given by η:

η =

∫
cdt

a(t)
=

∫ a

0

da′

a′
cda′

a′H(a′)
(9)
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Numbers

Hubble parameter h is measured in 100 Km/sec/ Mpc1

H0 =
h

0.98× 1010year
where 0.5 < h < 1.0 (10)

Hubble distance :

dH =
c

H0
≈ 9449 Mpc/h (11)

Critical density:

ρc =
3H2

0

8πG
= 1.88h2 × 10−29gm cm−3

= 2.775h−1 × 1011M�/(h−1Mpc)3 (12)

Temperature:

TCMB = 2.725K ≈ 2.35× 10−4 eV (13)

11 Mpc = 3.0856 × 1024 cm
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Observational Pillars

Hubble expansion

Big Bang Nucleosynethis

Cosmic Microwave Background Radiation (CMB)
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Cosmic Microwave Background

The cosmic microwave background (CMB) was discovered by
Wilson & Penzias [Penzias & Wilson (1965)] in 1965 and for
this discovery they were awarded 1978 Nobel Prize in Physics.

CMB was theoretically predicted in the context of synthesis
(nuclear) of elements by Alpher and Herman [Alpher &
Herman (1948)] and Gamow [Gamow (1948)] in late 1940s
and again later rediscovered by Zelodovich, Dicke, Peebles
[Dicke et al. (1965)].

In early 1990s the COBE mission of NASA discovered [Smoot
et al. (1992)] that the temperature of CMB is not the same
along different direction, or there are anisotropies and for this
John C. Mather and George F. Smoot were awarded 2006
Noble prize in physics.

WMAP and Planck have further measured CMB anisotropies
with great precision.
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What we know about CMB ?

CMB is a perfect blackbody radiation with temperature 2.725
degree Kelvin so its specific intensity is given by

Iν =
2h3

c2

1

ehν/kBT − 1
(14)

Largest anisotropy 10−3 in the CMB sky is due to the motion
of the solar system with respect to the rest frame of CMB
(dipole) :

∆T

T
=

v

c
cos θ (15)

for v=370 km/sec we get ∆T = 3.358× 10−3 Kelvin.

Ignoring the dipole anisotropy, CMB anisotropies are of the
order of 10−5.

CMB anisotropies are Gaussian.
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CMB Black Body spectrum
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CMB Anisotropies
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CMB Anisotropies

CMB anisotropies can be expressed in terms of multipole
moments:

∆T (n̂)

T
= Θ(n̂) =

l=∞∑
l=0

m=l∑
m=−l

almYlm(n̂) (16)

with

alm =

∫
dn̂Y ∗lm(n̂)Θ(n̂) (17)

and
〈a∗lmal ′m′〉 = δll ′δmm′Cl and < alm >= 0 (18)

Where Cl is called angular power spectrum.

Cl is directly related to two point angular correlation function:〈
Θ(n̂)Θ(n̂′)

〉
= C (θ) =

∑
l

2l + 1

4π
ClPl(cos θ) (19)

where cos θ = n̂.n̂′ and Pl are Legendre Polynomials.
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CMB Anisotropies
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Perturbations

CMB anisotropies are directly related to the fluctuations in matter
and geometry of space time at the time of last scattering (primary)
and after that (secondary).
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Phase Space density

Phase space density f (t,~x , ~p) also called distribution function,
is defined in terms of the number of configurations within an
infinitesimal phase volume d3xd3p around the point (~x , ~p)

dN = f (t,~x , ~p)d3xd3p (20)

In case of photons, which follow Bose-Einstein statistics, the
distribution function is (thermal equilibrium) is just the
function of energy:

fBE (p) =
1

epc/kBT − 1
(21)

15 / 54



Number density and energy density

The number density of photons at temperature T can be
calculated as:

nγ = 2

∫
d3p

(2π~)3
f (p) = 8π

(
kBT

hc

)3 ∫ ∞
0

x2dx

ex − 1
∝ T 3

(22)
where prefactor 2 is for two polarizations.

Energy density also can be calculated from the distribution
function :

ργ = 2

∫
d3p

(2π~)3
(pc)f (p) =

8π5k4
B

15h3c3
T 4 = aT 4 =

4σ

c
T 4

(23)
with∫ ∞

0

x2dx

ex − 1
= 2ξ(3) = 2.404 and

∫ ∞
0

x3dx

ex − 1
= 6ξ(4) =

π2

15
(24)

[Kolb & Turner (1990); Dodelson (2003); Weinberg (2008)]
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Problem 1

Given that the CMB is a black body distribution with temperature
2.725 K show that:

number density of CMB photons is around 440 /cc and

energy density Ωγ ≈ 2.47× 10−4/h2

photon to baryon ratio is around 109.
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Boltzmann Equation

Boltzmann equation describes the evolution of phase space
density, i.e., the distribution function f (t,~x , ~p).

df (t,~x , ~p)

dt
= C [f ] (25)

The LHS is called the ”collisionless” part and it describes the
effect of gravity.

The RHS is called the ”collisional” part and it describes the
change in the phase density due to interaction of of particles
(absorption, emission and scattering).
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In the present discussion we will try to solve the Boltzmann for
three different cases:

1 Recombination
e− + p ←→ H + γ (26)

2 Compton Scattering:

e−(p) + γ(q)←→ e−(p′) + γ(q′) (27)

3 Metric Perturbations: Change in photon density due to metric
perturbations.
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Boltzmann Equation: Collisional Part

Let us consider a reversible physical process in which two
particles labelled as ’1’ and ’2’ react and produce two particles
labeled as ’3’ and ’4’ which again produce ’1’ and ’2’

1 + 2←→ 3 + 4 (28)

If the number density and phase densities of particles
’1’,’2’,’3’ and ’4’ are n1, n2, n3, n4 and f1, f2, f3, f4 respectively
then from the Boltzmann Equation the number density of
particles ’1’ changes as :

a−3 d(a3n1)

dt
=

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

× δD(E1 + E2 − E3 − E4)δD(p1 + p2 − p3 − p4)M2

× {f3f4[1± f1][1± f 2]− f1f2[1± f3][1± f 4]} (29)

In LHS the factor of a3 is because the volume increases as a3

and factor a−3 is because density falls as a−3 when the
Universe expands.
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The number density of any species can be computed as:

ni = gi

∫
d3p

(2π)3
f (p) (30)

where for the case when eE/T >> 1 we can ignore the
difference between bosons and fermions:

f (p) =
1

eE/T − 1
(31)

We can compute the number density in two limits:

ni (0) =

gi

(
miT
2π

)3/2
e−mi/T , ifT << mi

, gi
T 3

π2 ifT >> mi

(32)
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Replacing the integral and the second line in equation (29) by
< σv > where σ is the scattering and v is the velocity we get:

a−3 d(a3n1)

dt
= n

(0)
1 n

(0)
2 < σv >

[
n3n4

n
(0)
3 n

(0)
4

− n1n2

n
(0)
1 n

(0)
2

]
(33)

LHS in Equation (33) is of the order n1/t ≈ n1H and RHS of
the order of n1n2 < σv >. If the reaction rate
n2 < σv >>> H then the RHS will be much larger and the
particles can be in equilibrium.

In Equation (33) the equality can be maintained if the
individual terms in RHS cancel each other.

n3n4

n
(0)
3 n

(0)
4

=
n1n2

n
(0)
1 n

(0)
2

(34)

This equation is called Nuclear Statistical Equilibrium (NSE)
or Saha equation.
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Recombination : Approximate solution of Boltzmann
equation

When the temperature of CMB falls below 1 eV electrons
combine with protons and form neutral hydrogen:

e− + p = H + γ (35)

and the number density of free electrons (which scatter with
photons and so affect CMB) drops.

We are interested in finding the change in the number density
of free electrons during recombination and for which we can
use the Boltzmann equation:

nenp
nH

=
n

(0)
e n

(0)
p

n
(0)
H

(36)

It is more useful to express the number density of free
electrons in terms of fraction:

Xe =
ne

ne + nH
=

np
ne + nH

(37)
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Now we can write an evolution equation for Xe from
Equation (36):

X 2
e

1− Xe
=

1

ne + nH

[(
meT

2π

)3/2

e−ε0/T

]
(38)

where ε0 = me + mp −mH is the Binding energy of hydrogen
atom.

Expressing ne + nH ≈ nb in terms of baryon-photon ratio η
i.e., nb = ηnγ and using the fact that nγ ∝ T 3 equation (38)
can be written as:

X 2
e

1− Xe
≈ 109

( me

2πT

)3
e−ε0/T ≈ 1015 when T = ε0 (39)

Since the RHS becomes very large so the equation is satisfied
only when Xe is close to unity or all the atoms are ionized and
for Xe < 1 we must solve the full Boltzmann equation.
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Recombination : Exact solution of Boltzmann equation

The Full Boltzmann equation can be written as:

a−3 d(a3ne)

dt
= n

(0)
e n

(0)
p < σv >

[
nH

n
(0)
H

− n2
e

n
(0)
e n

(0)
p

]

= nb < σv >

{
(1− Xe)

(
meT

2π

)3/2

e−ε0/T − X 2
e nb

}
(40)

which gives :

dXe

dt
=
{

(1− Xe)β − X 2
e nbα

(2)
}

(41)

with ionization rate β and the recombination rate α(2) are given by:

β =

(
meT

2π

)3/2

e−ε0/T (42)

and
α(2) =< σv > (43)
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There is a superscript 2 on the recombination rate because
recombination to the ground (n=1) is not useful since it leads
to production of reionizing photon. and the only way for
recombination to proceed is via capture to one of the excited
states of hydrogen.

The change in the number density of free electrons is
important from the point of view of observational cosmology
since recombination at z∗ ≈ 1000 is directly related to the
decoupling of CMB photons.
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Decoupling of CMB photons occurs roughly when the rate for
photons to Compton scatter off electrons becomes smaller
than the expansion rate.

neσT = XenbσT = 7.477× 10−30 cm−1XeΩbh
2a−3 (44)

Dividing the recombination rate by expansion rate (radiation
dominated):

H

H0
= Ω

1/2
m a−3/2[1 + a/eeq]1/2 (45)

which gives:

neσT
H

= 113Xe

(
Ωbh

2

0.02

)(
.15

Ωmh2

)1/2(
1 + z

1000

)3/2 [
1 +

1 + z

3600

0.15

Ωmh2

]−1/2

(46)
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Compton Scattering

Before recombination the main way by which photons and
electrons were couples was Compton scattering:

e−(~q) + γ(~p)←→ e−(~q′) + γ(~p′) (47)

We are interested in finding the change in the phase space
density for photons due to Compton scattering for the case
eE/T >> 1 (not differentiating bosons from fermions).

C [f (p)] =
1

p

∫
d3q

2Ee(q)(2π)3

∫
d3q′

2Ee(q′)(2π)3

∫
d3p

2E (p′)(2π)3
|M|2(2π)4

×δ3(~p + ~q − ~p′ − ~q′)δ(E (p) + Ee(q)− E (p′)− Ee(q))

×{fe(~q′)f (~p′)− fe(~q)f (~p)} (48)

Note that here we are interested in a situation when photons
are considered relativistic i.e., E (p) = pc and electrons
non-relativistic i.e., Ee(q) = mec

2 + q2/2me .
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Compton scattering

Note that for first approximation we can ignore the direction
dependence of Compton scattering and the amplitude for
Compton scattering can be written as:

|M|2 = 8πσTm
2
e (49)

where σT is the Thomson scattering cross-section.
The Dirac delta function for energy conservation (in the limit
when very less energy is exchanged) can be approximated as:

δ(E (p)+Ee(q)−E (p′)−Ee(q)) ≈ δ(p−p′)+
(~p − ~p′).~q

me

∂δ(p − p′)

∂p′

(50)
We Taylor expand the distribution function and keep only the
linear terms:

f (t,~x , ~p) =
[
ep/T (t){1+Θ(t,~x ,p̂)} − 1

]−1
≈ f 0(p)−p∂f

0(p)

∂p
Θ(t,~x , p̂)

(51)
where Θ(t,~x , p̂) is also called the brightness function.
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With all these simplifications the collision term can be written
as:

C [f (~p)] = −p∂f
0(p)

∂p
neσT [Θ0 −Θ(p̂) + p̂.~vb] (52)

where ~vb = ~q is the velocity vector for electron and Θ0 is the
temperature monopole2 terms:

Θ0 =
1

4π

∫
dΩ′Θ(t,~x , p̂′) (54)

When electrons do not have bulk velocity Compton scattering
try to drive temperature anisotropies towards the monopole
i.e., Θ(p̂) −→ Θ0.

2l th monopole is defined as:

Θl(µ) =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ(µ) (53)
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Corrections to the collision terms

In the derivation of the collision term due to Compton
scattering we ignored (1) direction dependence of scattering
and (2) Polarization.

If these corrections are taken into account the collision term
becomes:

C [f (~p)] = −p∂f
0(p)

∂p
neσT

[
Θ0 −Θ(p̂) + p̂.~vb −

1

2
P2(µ)Π

]
(55)

where µ = p̂.v̂b, P2(µ) is the Legendre polynomial and Π is
defined as:

Π = Θ2 + ΘP0 + ΘP2 (56)

where Θ2,ΘP2 are the dipole components of the temperature
and polarization fields respectively, and ΘP0 is the monopole
part for polarization.
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CMB Theory : Metric perturbations

Geometric structure of a homogeneous and isotropic Universe
is given by the Friedman-Robertson-Walker (FRW) metric and
for spatially flat case this can be written as:

ds2 = −c2dt2 + a2(t)δijdx
idx j (57)

There is a theorem called the decomposition theorem which
says that perturbations to the metric can be divided up into
three types: scalar, vector, and tensor and of these type
evolves independently.

Scalar perturbations (in conformal Newtonian Gauge) are
represented by two functions Ψ(~x , t) and which Φ(~x , t) which
corresponds to perturbations in Newtonian potential and
spatial curvature respectively.

ds2 = −[1+2Ψ(~x , t)]c2dt2+a2(t)δij [1+2Φ(~x , t)]dx idx j (58)
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The LHS side of Boltzmann can be explicitly written as:

df

dt
=
∂f

∂t
+
∂f

∂x i
dx i

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
(59)

In the linear order perturbation theory we can ignore the
dependency of f on p̂i so we get:

df

dt
=
∂f

∂t
+
∂f

∂x i
dx i

dt
+
∂f

∂p

dp

dt
(60)

We must compute the velocity dx i/dt and the force dp/dt in
the perturbed metric given by Equation (58).

Evolution equation i..e., Boltzmann equation for distribution
function becomes evolution equation for temperature
anisotropies in linear order perturbation:

f (t,~x , ~p) ≈ f 0(p)− p
∂f 0(p)

∂p
Θ(t,~x , p̂) (61)
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Four Momentum

Before we compute the velocity and acceleration it is useful to find
the components of the four momentum Pµ and corresponding
temporal and spatial components.

PµPµ = g00(P0)2 + p2 = −(1 + 2Ψ)(P0)2 + p2 (62)

or
P0 =

p√
1 + 2Ψ

≈ p(1− ψ) (63)

For spatial part we can write:

P i = Cp̂i (64)

where C is a constant which we can compute in the following way:

p2 = P iPi = C 2gij p̂
i p̂j = C 2a2(1 + 2Φ) (65)

and so
C =

p

a
√

1 + 2Φ
(66)

and
P i =

p

a
(1− Φ)p̂i (67)

35 / 54



Four Momentum

Velocity can be written as:

dx i

dt
=

dx i

dλ

dλ

dt
=

P i

P0
=

1

a
(1 + Ψ− Φ)p̂i (68)

For momentum we must use the Geodesic equation:

dPµ

dλ
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0 (69)

For time-time component:

dP0

dλ
+ Γ0

αβ

dxα

dλ

dxβ

dλ
= 0 (70)

where

Γµαβ =
1

2
gµν

(
∂gνα
∂xβ

+
∂gνβ
∂xα

−
∂gαβ
∂xν

)
(71)

From equation (70) and metric given by equation (58) we can
find out:

1

p

dp

dt
= −H − ∂Φ

∂t
− p̂i

a

∂Ψ

∂x i
(72)
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Boltzmann Equation for photons

The collisionless part of the Boltzmann equation can be
written as:

df

dt
=
∂f

∂t
+

p̂i

a

∂f

∂x i
− p

df

dp

[
H +

∂Φ

∂t
+

p̂i

a

∂Ψ

∂x i

]
(73)

In order to connect fluctuations in the distribution function to
the fluctuations in temperature we expand the distribution
perturbatevely around the equilibrium distribution:

f (t,~x , ~p) ≈ f 0(p)− p
∂f 0(p)

∂p
Θ(t,~x , p̂) + ... (74)

with

f 0 =
1

ep/T − 1
(75)
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Zero order perturbations

The collision term is zero :

df

dt
= 0 =

∂f

∂t
− p

df

dp
H (76)

The distribution function f ≈ f0 and

∂f 0

∂p
= −T

p

∂f 0

∂T
(77)

and
∂f 0

∂t
= − p

T

dT

dt

∂f 0

∂p
(78)

The zeroth order equation becomes:[
− 1

T

dT

dt
− 1

a

da

dt

]
∂f 0

∂p
= 0 (79)

which gives:

T (t) ∝ 1

a(t)
(80)
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Linear order perturbations

If we keep only linear order terms (in Θ,Ψ,Ψ) in the LHS and
RHS (due to Compton scattering) in the Boltzmann equation
for photons we get:

∂Θ

∂t
+
p̂i

a

∂Θ

∂x i
+
∂Φ

∂t
+
p̂i

a

∂Ψ

∂x i
= neσT [Θ0−Θ+ p̂.~vb−

1

2
P2(µ)Π]

(81)
This equation is also called the Brightness equation
[Kurki-Suonio (2010)]

In terms of conformal time the full Boltzmann equation can
be written as:

Θ̇ + p̂i
∂Θ

∂x i
+ Φ̇ + p̂i

∂Ψ

∂x i
= neσTa[Θ0 −Θ + p̂.~vb −

1

2
P2(µ)Π]

(82)
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We can expand temperature anisotropies Θ(η,~x , p̂) in Fourier
space:

Θ(η,~x , p̂) =

∫
dk

(2π3)
e ikk̂.p̂Θ̃(η, k̂ , k) (83)

and write the Boltzmann equation (82) as:

˙̃Θ + ikµΘ̃ + ˙̃Φ + ikµΨ̃ = −τ̇ [Θ̃0− Θ̃ +µṽb −
1

2
P2(µ)Π] (84)

where the optical depth τ is defined as:

τ(η) =

∫ η0

η
a(τ)dη′neσT (85)

so −neσTa = τ̇ and the direction of propagation of photon is
given by µ = k̂.p̂.
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Boltzmann equations for baryons, dark matter and
neutrinos

The Boltzmann equation for the density δ and velocity v of
dark matter particles is given by:

˙̃δ + ikṽ = 3 ˙̃Φ (86)

and
˙̃v +

ȧ

a
ṽ = −ikΨ̃ (87)

For baryons :
˙̃δb + ikṽb = 3 ˙̃Φ (88)

and
˙̃vb +

ȧ

a
ṽb = ikΨ̃ +

τ̇

R
[ṽb + 3iΘ̃1] (89)

where R = 3ρb/ργ
For neutrinos (massless)

˙̃N + ikµÑ = − ˙̃Φ− ikµΨ̃ (90)
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Einstein Equations

We will consider the following perturbed metric:

ds2 = −c2dt2[1+2Ψ(~x , t)]+a2(t)δij [1+2Φ(~x , t)]dx idx j (91)

We will consider the following two components of Einstein
equations:

G 0
0 =

8πG

c4
T 0

0 (92)

and the trace-less part of the spatial component:

G i
j

(
k̂i k̂

j − 1

3
δji k

2

)
= T i

j

(
k̂i k̂

j − 1

3
δji k

2

)
(93)
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Energy Momentum tensor

The temporal part of the Energy momentum tensor for
photons is given by:

T 0
0 = −2

∫
d3p

(2π)3
p

[
f 0 − p

∂f 0

∂p
Θ

]
= −ργ(1 + 4Θ0) (94)

The trace-less part of the spatial component is given by:

T i
j

(
k̂i k̂

j − 1

3
δji k

2

)
=
∑
i

gi

∫
d3p

(2π)3

p2µ2 − p2/3

Ei (p)
fi (~pi )

(95)

The components of Einstein equation are:

k2Φ̃ + 3
ȧ

a

(
˙̃Φ− Ψ̃

ȧ

a

)
= 4πGa2[ρdmδ̃dm + ρb δ̃b + 4ργΘ̃0 + 4ρνÑ0]

(96)

k2(Φ̃ + Ψ̃) = −32πGa2(ργΘ̃2 + ρνÑ2) (97)
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Boltzmann Equations

In order to solve the set of 9 first order differential
(Boltzmann-Einstein) equations we need initial conditions.

Since variables depend on each other so we do not need initial
conditions for all.

In fact when considering Ψ = −Φ we need just one initial
condition i.e., for Φ.

Inflation which explain large scale uniformity of the CMB sky
also provides a mechanism to create perturbations in Φ.

In the very early universe kη << 1 i.e., modes are outside
horizon, these equations become quite simple since we can
ignore terms which have k and higher power of k.

44 / 54



Multipole moments

Note that temperature anisotropies in Fourier space can be
written as:

Θ(η,~x , p̂) =

∫
dk

(2π3)
e ikk̂.p̂Θ̃(η, k̂ , k) (98)

Assuming that the perturbations are axisymmetric around k
we can write:

Θ̃(η, k , µ) =
∑
l

(2l + 1)(−i)lΘ̃l(η, k)Pl(µ) (99)

and its inverse:

Θ̃l(η, k) =
1

(−i)l

∫ 1

−1

dµ

2
Pl(µ)Θ̃(η, k, µ) (100)

We can solve for various multipoles Θ̃l(η, k) of CMB
anisotropies.
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Tightly coupled limit of the Boltzmann equation

Before decoupling photons and baryons were tightly couples
with each other i.e., interaction rate was much larger than the
expansion.

In the tight coupling limit only multipoles which were
significant are the monopole Θ0 and dipole Θ1 and photons
behaved just like perfect fluid which is described by the
density (monopole) and velocity (dipole).

It turned out that the evolution equation for the monopole
and dipole can be written as:

Θ̇0 + kΘ1 = −Φ̇ (101)

and

Θ̇1 −
kΘ0

3
=

kΨ

3
+ τ̇

[
Θ1 −

ivb
3

]
(102)

These equation can be obtained by multiplying the full
Boltzmann equation (84) by P0(µ) and P1(µ) respectively
and carrying out the integration over µ.
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Acoustic Oscillations

Combining two first order DE for monopole and dipole into a
second order DE and use eliminate the vb by using the
velocity equation we get the following equation:

Θ̈0 +
ȧ

a

R

1 + R
Θ̇0 + k2c2

s Θ0 = −k2Ψ

3
− ȧ

a

R

1 + R
Φ̇− Φ̈ = F (k , η)

(103)

where cs is the sound speed and defined in the following way:

cs =

√
1

3(1 + R)
(104)

and it depends on the baryon density.

The fluid oscillates both in space and time and the period of
oscillations depend on the sound speed and so on the baryon
density.
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Acoustic Oscillations

We can solve the second order ordinary differential
equation (103) for photons by Green function method i.e.,
firstly we can find the solution for the homogeneous equation
and then use that to solve with the source term.

Ignoring the damping term the solution for the homogeneous
equation are as follows:

S1(k , η) = sin[krs(η)]; and S1(k, η) = cos[krs(η)] (105)

where rs is the sound horizon and is given by:

rs(η) ≡
∫ η

0
dη′cs(η′) (106)
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The approximate solution we have written gives us enough
information about the location of the peaks:

kp =
nπ

rs
where n = 1, 2, 3, .. (107)

From the equations we have used for the monopole and dipole
we can see that the monopole and dipole are out of phase:

Θ0(k , η) ≈ cos[krs(η)]; and Θ1(k, η) = sin[krs(η)] (108)
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Integral solution of the Boltzmann equation

The Boltzmann equation for photons can be written as:

Θ̇+(ikµ− τ̇)Θ = −Φ̇− ikµΨ− τ̇
[

Θ0 + µvb −
1

2
P2(µ)Π

]
= S

(109)
where

S = e−ikµη+τ d

dη
[Θe ikµη−τ ] (110)

We can solve equation (110) in the following way:

Θ(η0) = Θ(ηinit)e
ikµ(ηinit−η0)e−τ(ηinit)+τ(η0)+

∫ η0

ηinit

dηSe ikµ(η−η0)−τ(η)

(111)
The first term is zero since τ(η0) = 1 and τ(ηinit) is very large
so we have:

Θ(k , µ, η0) =

∫ η0

0
S(k , µ, η)e ikµ(η−η0)−τ(η) (112)
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Multiplying equation (112) by Pl(µ) both side and integrating
over µ we get:

Θl(k , η0) = (−1)l
∫ η0

0
dηS(k , η)e−τ(η)jl [k(η − η0)] (113)

where we have used :∫ 1

−1
Pl(µ)e ikµ(η−η0) =

1

(−i)l
jl [k(η − η0)] (114)

where jl is the spherical Bessel function.

There are two terms in the equation (113) - the source term
and the geometrical term. Ths geometrical term can be
computed in advance irrespective to the model i., the source
term which make the computation fast.
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CMB Angular power spectrum

CMB anisotropies are produced by the inhomogenities which
were present at the time of recombination:

Θ(n̂) =

∫
dDΘ(x)δ(D − D∗) (115)

where D∗ is the comoving distance of the last scattering
surface.

In Fourier space:

Θ(n̂) =

∫
d3k

(2π)3
Θ(k)e ik.D∗n̂ (116)

We can expand the Fourier modes in terms of sphenrical
harmonics:

e ik.D∗n̂ = 4π
∑
l ,m

i l jl(kD∗)Y
∗
lm(k̂)Ylm(n̂) (117)
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Angular Power spectrum

Using :

Θ(n̂) =
l=∞∑
l=0

m=l∑
m=−l

almYlm(n̂) (118)

we get

alm =

∫
d3k

(2π)3
Θ(k)4πi l jk(kD∗)Ylm(k̂) (119)

The angular power spectrum Cl can be computed as:

〈a∗lmal ′m′〉 = 4πδll ′δmm′

∫
dlnkj2

l (kD∗)∆2
T (k) (120)

where ∆T (k) = k3P(k)/2π2 is the spatial power spectrum
i.e., P(k) =< |Θ(k)|2 >
For the case of slowly varying power spectrum i.e., scale
invariant, we can take ∆2

T (K ) out of integration and get:

Cl ≈
2π

l(l + 1)
∆2

T (l/D∗) or ∆2
T (l/D∗) =

l(l + 1)

2π
Cl (121)
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