Methods of Mathematical Physics-I

Dipankar Bhattacharya

IUCAA-NCRA Graduate School 2021

Linear function spaces (Vector spaces)

Let $\phi_1(s), \phi_2(s), \phi_3(s), ..., \phi_n(s)$ be a set of linearly independent functions

These can be used as *basis functions* to construct a linear function space of which each linear combination of these basis functions

$$f(s) = \sum_{i=1}^{n} a_i \phi_i(s)$$
 is a member.

 $f(s) = \sum_{i=1}^{n} a_i \phi_i(s)$ is a member. $\begin{vmatrix} a_i \text{ are coefficients independent of } s \\ \text{They may be real or complex} \\ \text{Equivalent to coordinates in function space} \end{vmatrix}$

If $g(s) = \sum b_i \phi_i(s)$ is another member of the function space, then

$$h(s) = f(s) + g(s) = \sum_{i=1}^{n} (a_i + b_i) \phi_i(s) \text{ is also a member}$$
 [closed under addition]

$$u(s) = kf(s) = \sum_{i=1}^{n} ka_i\phi_i(s)$$
 (k a scalar) is also a member [closed under multiplication]

Linear function spaces (Vector spaces)

Scalar Product
$$\langle f|g\rangle = \int_a^b f^*(s)g(s)w(s)ds$$

with a, b, w(s) being chosen as a part of the definition of the scalar product. w(s) must be positive definite in the interval [a,b].

If a function space is closed under addition and multiplication by a scalar and if a scalar product exists for all pairs of its members then such a function space is called a *Hilbert Space*.

If the basis functions are such that $\langle \phi_i | \phi_j \rangle = 0$ for $i \neq j$ then they are called *orthogonal*. In addition if $\langle \phi_i | \phi_i \rangle = 1$ for all i then the basis functions are called *orthonormal*.

In Hilbert space the following inequalities hold:

Schwartz Inequality:
$$|\langle f|g\rangle|^2 \leq \langle f|f\rangle\langle g|g\rangle$$

Schwartz Inequality:
$$|\langle f|g\rangle|^2 \leq \langle f|f\rangle\langle g|g\rangle$$

Bessel's Inequality: $\langle f|f\rangle \geq \sum_{i=1}^n |a_i|^2$ if bases are orthonormal

Linear operators in Hilbert Space: $\mathcal{A}f = \overline{f}$ (another function in the same space)

$$\mathcal{A}(f+g) = \mathcal{A}f + \mathcal{A}g; \ (\mathcal{A}+\mathcal{B})f = \mathcal{A}f + \mathcal{B}f; \ \mathcal{A}k = k\mathcal{A}$$

If inverse exists then $A^{-1}A = 1 = AA^{-1}$

Adjoint
$$\mathcal{A}^{\dagger}$$
: $\langle f|\mathcal{A}g\rangle = \langle \mathcal{A}^{\dagger}f|g\rangle$

If $A = A^{\dagger}$ then the operator is Self-adjoint, also called *Hermitian*.

Hermitian operators are important in physics because they have real eigenvalues, representing measurable physical quantities.

If $A^{\dagger} = A^{-1}$ then the operator is called *Unitary*.

An operator that is Real and Unitary is called *Orthogonal*.

Eigenvalues and Eigenfunctions

Example: Schrödinger's Equation $\mathcal{H}\psi=E\psi$

 ${\cal H}$ is a differential operator, E is a scalar

E is a fixed number for which a solution is sought.

Solution may not exist for all values of E

Values of E that admit solutions are called Eigenvalues.

The corresponding solutions ψ are called *Eigenfunctions*.

In general
$$\mathcal{L}u(x) + \lambda w(x)u(x) = 0$$

where λ is the eigenvalue and

w(x) is a weight function that appears in the definition of scalar product

For a given λ , the function $u_{\lambda}(x)$ that satisfies the equation along with the given boundary conditions is the corresponding eigenfunction

Existence of eigenfunction is not guaranteed for an arbitrary λ .

Often the eigenvalues are discrete, dictated by the boundary conditions.

Sturm-Liouville Theory

Consider a second order linear differential operator

$$\mathcal{L} = p_0(x)\frac{d^2}{dx^2} + p_1(x)\frac{d}{dx} + p_2(x)$$

If this can be cast in the form

$$\mathcal{L}u = \frac{d}{dx} \left[p_0(x) \frac{du}{dx} \right] + p_2(x)u(x)$$

Then \mathcal{L} is called a *self-adjoint* or *Sturm-Liouville* operator

This requires
$$p'_0(x) = p_1(x)$$

If the original operator is not self-adjoint then it can be rendered so by multiplying a weight function

$$w(x) = \frac{1}{p_0(x)} \exp\left[\int \frac{p_1(x)}{p_0(x)} dx\right]$$

This is possible if the zeros of $p_0(x)$ do not lie within the domain of interest

Rewrite the self-adjoint operator as

$$\mathcal{L}u = \frac{d}{dx} \left[p(x) \frac{du}{dx} \right] + q(x)u(x) = [pu']' + qu$$

 $\mathcal{L}u = f(x)$ would admit two linearly independent solutions. Let's call them u(x) and v(x). The boundary conditions will decide the linear combination that will be the desired solution.

If x = [a, b] define the boundary, then the boundary conditions could be

- ▶ Dirichlet: on u(a), v(a); u(b), v(b)
- Neumann: on u'(a), v'(a); u'(b), v'(b)

The scalar product
$$\langle v|\mathcal{L}u\rangle=\int_a^b v^*\mathcal{L}u\,dx=\int_a^b v^*(pu')'\,dx+\int_a^b v^*qu\,dx$$
The 1st term: $v^*pu'|_a^b-\int_a^b v^{*'}pu'\,dx=v^*pu'|_a^b-v^{*'}pu|_a^b+\int_a^b u(pv^{*'})'\,dx$
So $\langle v|\mathcal{L}u\rangle=[v^*pu'-v^{*'}pu]_a^b+\int_a^b [(pv^{*'})'+qv^*]u\,dx$

If such boundary conditions are specified that $[v^*pu' - v^{*\prime}pu]_a^b = 0$

Thus \mathcal{L} is self-adjoint.

Boundary conditions of the type

$$u, v = 0$$
 at the boundaries (Dirichlet)
 $u', v' = 0$ at the boundaries (Neumann)
 $v^*pu'|_a = v^*pu'|_b$ for all u, v (Periodic)

Will all satisfy the requirement of boundary conditions for self-adjoincy

Note that any linear combination of functions satisfying the above boundary conditions will also satisfy the same.