## Methods of Mathematical Physics-I

Dipankar Bhattacharya

**IUCAA-NCRA** Graduate School 2021

Case where the variance  $\sigma^2$  is specified.

If p(x|I) is normalisable and the variance is finite then the mean will also exist. Let us assume that the mean is  $\mu$ , then

$$\langle (x - \mu)^2 \rangle = \int (x - \mu)^2 p(x|I) \, dx = \sigma^2$$

We then maximise

$$Q = -\sum_{i} p_{i} \ln \left[ \frac{p_{i}}{m_{i}} \right] + \lambda_{0} \left( 1 - \sum_{i} p_{i} \right) + \lambda_{1} \left( \sigma^{2} - \sum_{i} (x_{i} - \mu)^{2} p_{i} \right)$$

$$p_i = m_i e^{-(1+\lambda_0)} e^{-\lambda_1 (x_i - \mu)^2}$$

Which for uniform measure yields, after normalisation and setting the variance,

$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right],$$

a Gaussian distribution.

In multi-dimensions, the entropy function to be maximised may be written as

$$S(\lbrace x \rbrace) = -\iint \cdots \int p(\lbrace x \rbrace) \ln \left[ \frac{p(\lbrace x \rbrace)}{m(\lbrace x \rbrace)} \right] d^{N}x$$

where  $p(\lbrace x \rbrace) = p(x_1, x_2, \dots, x_N | I)$  and so on.

The case where the variances of the individual  $x_k$  are specified to be  $\sigma_k^2$ , constrained maximisation yields

$$p(\{x\}|\{\mu,\sigma\}) = \prod_{k=1}^{N} \frac{1}{\sigma_k \sqrt{2\pi}} \exp\left[-\frac{(x_k - \mu_k)^2}{2\sigma_k^2}\right],$$

a product of the individual Gaussians.

If we consider  $x_k$  to be individual data points  $D_k$ , with corresponding errors  $\sigma_k$  and predicted model values  $\mu_k$ , then the above is the same as the least-squares likelihood function relevant to minimum  $\chi^2$  fits.

Case where the  $l_1$ -norm is specified:

If, instead of variance, the  $l_1$ -norms are specified for the pdf, namely

$$\langle |x_k - \mu_k| \rangle = \iint \cdots \int |x_k - \mu_k| p(\{x\}) d^N x = \epsilon_k$$

then the constrained maximisation of entropy function results in

$$p(\lbrace x \rbrace | \lbrace \mu, \epsilon \rbrace) = \prod_{k=1}^{N} \frac{1}{2\epsilon_k} \exp\left[-\frac{|x_k - \mu_k|}{\epsilon_k}\right]$$

At times, instead of  $\chi^2$  fitting, this likelihood function is maximised for the purpose of fitting model to data. This method goes by the name *Maximum Likelihood fit*, Absolute Deviation fit or  $l_1$ -norm fit.

Statistics of Trials

Say M trials are conducted, resulting in N successes in a given instance. Repeated conduct of such trials will result in a probability distribution of N

It is specified that the average number of successes in M trials is  $\mu$ , i.e.

$$\langle N \rangle = \sum_{N=0}^{M} Np(N|M,\mu) = \mu$$

Constrained maximisation of entropy in this case would yield

$$p(N|M,\mu) \propto m(N)e^{-\lambda N}$$

In this case the measure m(N) is not uniform.

In any trial there are two possible outcomes - success or failure. In M trials, there would be  $2^M$  possible outcomes. In gross ignorance, all of them will have equal probability. Now the number of different ways N successes can be achieved in M trials is

$${}^{M}C_{N} = \frac{M!}{N!(M-N)!}$$

which must be proportional to m(N).

We then have 
$$p(N|M, \mu) = A \cdot^M C_N \cdot e^{-\lambda N}$$

Normalising, 
$$A \sum_{N=0}^{M} {}^{M}C_{N} \left( e^{-\lambda} \right)^{N} = A \left( 1 + e^{-\lambda} \right)^{M} = 1$$

i.e. 
$$A = (1 + e^{-\lambda})^{-M}$$
. Then,

$$\sum_{N=0}^{M} Np(N|M,\mu) = A \sum_{N=0}^{M} N \cdot {}^{M}C_{N} \cdot e^{-\lambda N} = \frac{M (1 + e^{-\lambda})^{M-1}}{(1 + e^{-\lambda})^{M}} e^{-\lambda} = \mu$$

giving 
$$1 + e^{\lambda} = M/\mu$$

and 
$$p(N|M,\mu) = \frac{M!}{N!(M-N)!} \left(\frac{\mu}{M}\right)^N \left(1 - \frac{\mu}{M}\right)^{M-N}$$

which is a Binomial Distribution. In the limit  $M \to \infty$  this becomes

$$p(N|\mu) \approx \frac{M^N}{N!} \cdot \frac{\mu^N}{M^N} \cdot \left(1 - \frac{\mu}{M}\right)^M = \frac{\mu^N \mathrm{e}^{-\mu}}{N!}$$
: The Poisson Distribution